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Abstract
Enhancing optical nonlinearities so that they become appreciable on the single photon level and
lead to nonclassical light fields has been a central objective in quantum optics for many years.
After this has been achieved in individual micro-cavities representing an effectively zero-
dimensional volume, this line of research has shifted its focus towards engineering devices where
such strong optical nonlinearities simultaneously occur in extended volumes of multiple nodes of
a network. Recent technological progress in several experimental platforms now opens the
possibility to employ the systems of strongly interacting photons, these give rise to as quantum
simulators. Here we review the recent development and current status of this research direction
for theory and experiment. Addressing both, optical photons interacting with atoms and
microwave photons in networks of superconducting circuits, we focus on analogue quantum
simulations in scenarios where effective photon-photon interactions exceed dissipative processes
in the considered platforms.

Keywords: quantum simulation, strongly correlated photons, quantum many-body systems,
superconducting circuits, non-equilibrium quantum systems, micro-cavities, circuit quantum
electrodynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum simulation [36, 50, 89] is a useful concept in several
situations. One application considers the emulation of phy-
sical phenomena that are in their original form not accessible
with existing experimental technology. This could for
example be because the required energy or length scales
exceed anything that is realisable. Another, possibly more
prominent application of quantum simulations, which is the
subject of this review is quantum many-body physics.

The dimension of the Hilbert space for a quantum many-
body system grows exponentially in the number of its

constituents (the number of particles). Hence, to specify an
arbitrary quantum state of such a system one needs to store an
exponentially growing amount of complex numbers, the
probability amplitudes of the state’s components. This task
quickly becomes impossible on available classical computers.
With numerical simulations of such systems being out of
reach, one could hope to nonetheless explore them in detail
via experiments. Yet, unfortunately it is in many situations
not possible to resolve their microscopic properties. Here
quantum simulation promises a way forward. Complex
quantum many-body systems that defy experimental access
are emulated by other systems which allow for much better
experimental control and measurement resolution. The latter
is often due to different temperature, energy, length or time
scales at which quantum simulators work as compared to their
simulation targets. This idea to simulate a complex quantum

Journal of Optics

J. Opt. 18 (2016) 104005 (27pp) doi:10.1088/2040-8978/18/10/104005

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

2040-8978/16/104005+27$33.00 © 2016 IOP Publishing Ltd Printed in the UK1

mailto:m.j.hartmann@hw.ac.uk
http://dx.doi.org/10.1088/2040-8978/18/10/104005
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8978/18/10/104005&domain=pdf&date_stamp=2016-09-16
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8978/18/10/104005&domain=pdf&date_stamp=2016-09-16
http://creativecommons.org/licenses/by/3.0/


system with another well controllable one was originally
proposed by Feynman [82] by suggesting that a ‘computer’
built of quantum mechanical elements is needed to simulate
highly complex quantum systems.

The observation that an exponentially growing amount of
data is needed to specify a quantum state on the other hand
indicates that quantum dynamics can execute computations
with massive parallelism. Indeed there are known examples
where a quantum computer could solve a problem exponen-
tially faster than any known classical algorithm [74]. In the
mid 1990s, Lloyd showed that a universal quantum computer
would also be able to simulate any quantum system effi-
ciently [169].

With its conceptual use being well understood, the con-
cept of quantum simulation received a boost in terms of
practical implementations through the successful emulations
of Bose–Hubbard models in equilibrium with ultra-cold
atoms in optical lattices [94]. Quantum simulations with ultra-
cold atoms have since then developed into a very active and
successful field of research, see [29] and [28] for recent
reviews. Concepts for quantum simulation have also been
successfully pursued with trapped ions [27] and in quantum
chemistry [134, 172].

Quantum simulators can operate in two conceptually
different ways. In digital quantum simulation, the time evol-
ution to be simulated is decomposed into a sequence of short
evolution steps using the Trotter formula. The individual
steps of such a decomposition are often very similar to
quantum gates, so that a digital quantum simulation can be
viewed as a special purpose quantum computation. In ana-
logue quantum simulation, in contrast, the device is operated
in such a way that it’s dynamics can, for suitable initial
conditions, be approximated by an effective time-independent
Hamiltonian, the physics of which one aims to simulate.

In this review we will summarise the developments
towards quantum simulations with photons throughout recent
years. In doing so, we will concentrate on analogue simula-
tions of quantum many-body physics with photons that are
made to interact with each other via optical nonlinearities. We
focus on regimes where the effective photon-photon interac-
tions are a dominant process and in particular exceed the
dissipation processes for individual photons. We will thus
only very briefly touch developments in digital quantum
simulations, but not cover the progress in simulations with
linear optics devices and refer interested readers to the recent
review by Aspuru-Guzik and Walter [11].

Generating strong optical nonlinearities or effective
photon-photon interactions has been a central goal of research
in quantum optics for many years. For more than a decade,
optical nonlinearities on the single photon level have now
been realised in single cavities that confine the trapped light
fields as strongly as possible [254]. Due to technological
progress in the micro-fabrication of high finesse resonators it
has now become feasible to couple several resonators
coherently to form an extended network [141]. Alternatively
one-dimensional waveguides doped with optically highly
nonlinear media can be considered. These developments give
rise to networks or extended volumes where strong light-

matter coupling and hence appreciable effective photon-
photon interactions take place simultaneously in multiple
locations.

The term ‘interacting photons’ used in the title calls for
some explanation. Pure photons do only exist in infinitely
extended vacuum. Any matter that light enters into or any
boundary conditions, e.g. in the form of a waveguide, it is
subjected to will cause the emergence of a polarisation in
these media. The elementary excitations of such fields are
then polaritons, combinations of photons and excitations of
the polarisation-fields, and these do interact if the medium has
an appreciable non-linearity. It is photons in this sense that
are considered in this review.

The remainder of this review is organised as follows. In
section 2, we review the development towards quantum
simulation with optical photons that are subject to strong
effective interactions mediated by strongly polarisable atomic
media or quantum well structures. We cover the research on
cavity arrays leading to effective Bose–Hubbard or spin
models and Jaynes–Cummings-Hubbard models, see
section 2.1, as well as work on continuum models leading to
Lieb-Lininger models and generalisations thereof, see
section 2.2. Finally we briefly touch on approach employing
atomic Rydberg media in section 2.3. In section 3, we then
describe more recent developments with microwave photons
hosted in networks of superconducting circuits. After briefly
introducing the quantum theory for electrical circuits, c.f.
section 3.1, we cover developments towards Bose–Hubbard,
c.f. section 3.2, and Jaynes–Cummings-Hubbard models, c.f.
section 3.3, in these devices. We then point out some
developments in digital quantum simulation, c.f. section 3.4,
and discuss recent experimental progress, c.f. section 3.5. In
section 4, we discuss the quantum many-body dynamics that
can be explored in the considered quantum simulators. We
first review equilibrium calculations of phase diagrams, c.f.
section 4.1, then discuss non-equilibrium and driven-dis-
sipative regimes, c.f. section 4.2, and finally comment on
employed and recently developed calculation techniques, c.f.
section 4.3, and the experimental signatures of the predicted
phenomena, c.f. section 4.4. We then discuss the more recent
work on quantum simulation of many-body systems subject
to artificial gauge fields, see section 5, which has already seen
some important experimental advances with photons and
conclude with a summary in section 6.

2. Optical photons interacting with atoms

First theory developments towards quantum simulations with
interacting photons considered optical photons that couple to
atoms. In order to generate sufficiently strong optical non-
linearities for this aim, strongly confined light-fields with
appreciable interactions between individual photons and
atoms where considered. Such strong atom-light interactions
had been achieved in high finesse optical cavities [26] in the
years before and so multiple cavities coupled via tunnelling of
photons between them were considered initially, see also the
reviews by Hartmann et al [112], Tomadin et al [242] and
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Noh et al [190]. Yet, for optical frequencies, the strength of
achievable light matter couplings is about six orders of
magnitude smaller than the frequency of the employed pho-
tons and it is thus quite demanding to build multiple cavities
with sufficiently low disorder so that photons can tunnel
efficiently between them. As a consequence setups with thinly
tapered optical fibres have been considered subsequently to
avoid these challenges, see also a recent review by Roy et al
[218]. We here first review the work on cavity arrays and then
turn to discuss continuum models in tapered optical fibres.

2.1. Lattice models in cavity arrays

2.1.1. Coupling of cavities. In cavity arrays, the individual
cavities are coupled via tunnelling of photons between them
due to the overlap of the spacial profile of their resonance
modes, c.f. figure 1. Following reference [259] an array of
cavities can be described by a periodic dielectric constant,
 = +
  
r r Rn( ) ( ), where r is the three dimensional position

vector, R the lattice constant (i.e. the distance between the
centres of adjacent cavities) and


n a vector of integers.

Expanding the electromagnetic field in terms of Wannier
functions wR, localised in the cavities at locations =

 
R Rn ,

the tunnelling rate of photons between neighbouring cavities
can be expressed as

  òw= - ¢
     J d r r r w w2 , 1phot C R R R

3 [ ( ) ( )] ( )

where - ¢ =
 
R R R∣ ∣ , wC is the resonance frequency of the

considered cavity mode and the dielectric function 
 rR ( )

describes a single cavity surrounded by bulk material only.
Introducing creation and annihilation operators a

R
† and

aR for the Wannier modes, the Hamiltonian of the field can
thus be written as

 å åw= +
á ¢ñ

¢
 

 
 a a J a a , 2C

R
R R phot

R R
R R

,

( )† †

where åá ¢ñ
 
R R, is a sum over nearest neighbours. Since the

tunnelling rate is typically much less than the photon
frequency, wJphot C , a rotating wave approximation has
been applied. Equation (2) assumes that all the cavities have
the same resonance frequency and that the tunnelling rate is
the same for all cavity-cavity interactions. In practise there

will always be some disorder in the array and the resonance
frequencies, w


RC ( ), and tunnelling rates, ¢

 
J R R,phot ( ) will

differ from cavity to cavity. This disorder in the array is a
significant challenge for experimental realisations, see
section 2.1.7 for further discussion. On the other hand it
can even give rise to interesting effects such as the emergence
of glassy phases, see section 4.

2.1.2. Bose-Hubbard models. Although the Hamiltonian (2)
has applications for guiding light-modes in ‘coupled resonator
optical waveguides’, see [259], it is of limited interest in the
context of quantum simulation. Indeed, the model is fully
harmonic and can thus be solved efficiently by for example
deriving equations of motion for the first and second order
moments of the creation and annihilation operators in the
Heisenberg picture. Such non-interacting models thus do not
feature a significant quantum complexity and no quantum
simulators are required to obtain understanding of them.
Nonetheless several interaction free models have recently
received significant interest for experiments as they can model
artificial gauge fields and give rise to peculiar band structures
and chiral edge modes. We discuss such models in more
detail in section 5.

The complexity of a model in turn grows dramatically if
interactions between excitations play a role and usually no
exact solutions are known in such cases. Here we in particular
consider on-site interactions as their interplay with the
tunnelling leads to interesting many-body physics. A
paradigm for such a situation is the Bose–Hubbard Hamilto-
nian,

å å

å

m= - +

+ -

á ¢ñ
¢

 
 

 


   

H p p J p p

U
p p p p

H.c.

2
1 , 3

BH
R

R R
R R

R R

R
R R R R

,

( )

( ) ( )

† †

† †

where p
R
† creates a boson at site


R , J is the hopping rate, U

the on-site interaction strength, and μ the chemical potential.
Motivated by its application to Josephson junction arrays
[78], this model received significant interest in the 1990s and
its ground state phase diagram has been discussed by Fisher
et al [85]. It is characterised by two different phases at zero
temperature, an incompressible Mott insulating phase in the
interaction dominated regime, >U J , with commensurate
filling and a superfluid phase elsewhere. The phase transition
between both phases has been observed in a seminal
experiment with ultra-cold atoms in an optical lattice
[28, 29, 94].

Approaches to generate an effective Bose–Hubbard
model for quantum simulation purposes with photonic
excitations consider polaritons that are formed by photons
which either interact with atoms [108] or with quantum well
excitons [248]. We first discuss setups involving atom-photon
interactions.

2.1.3. Bose-Hubbard model with dark state polaritons. A
Bose–Hubbard model can be generated in an array of cavities
that are filled with atoms of a specific four-level structure

Figure 1. An array of nonlinear cavities. Photon hopping occurs due
to the overlap (shaded green) of the light modes (green lines) of
adjacent cavities. Atoms in each cavity (brown), which are driven by
external lasers (blue) give rise to an on site potential. Reprinted
from [108].

3

J. Opt. 18 (2016) 104005 Topical Review



[108] and driven by a laser in the same manner as in
Electromagnetically Induced Transparency (EIT) [86], see
figure 2. The transitions between levels ñ2∣ and ñ3∣ couple to
the laser field whereas the transitions ñ « ñ2 4∣ ∣ and ñ « ñ1 3∣ ∣
couple to the cavity resonance mode. Levels ñ1∣ and ñ2∣ are
assumed to be metastable with negligible spontaneous
emission rates.

As has been shown by Imamŏglu and co-workers, this
atom cavity system can exhibit a very large optical
nonlinearity [125, 257] leading to the phenomenon of
photon blockade, where an input drive that is resonant to the
first excitation in the system can only generate one
excitation which needs to decay before a subsequent
excitation can be generated [125, 257]. Photon blockade
has so far been experimentally shown with coherent
[26, 32, 75, 77, 152, 207] as well as incoherent
driving [114].

For one cavity filled with N atoms of the level structure
sketched in figure 2 the Hamiltonian describing the atom-
photon interactions reads

å

å

es ds e s

s s s

= + + D +

+ W + + +

=

=

H

g a g a H.c. ,

4

I

j

N

j j j

j

N

j j j

1

22 33 44

1

23
13

13
24

24

( ( ) )

( )
( )

† †

in a rotating frame with respect to =H0

w w s w s w s+ + å + +=a a 2C j
N

C j C j C j
1

2 1
22 33 44( ) ( )† . Here

s = ñák lj
kl

j j∣ ∣ is the transition operator between levels ñl∣
and ñk∣ of atom j, wC is the frequency of the cavity mode, Ω is
the Rabi frequency of the laser drive and g13 (g24) are the
coupling strengths of the cavity mode to the atomic transitions
ñ « ñ2 4∣ ∣ ( ñ « ñ1 3∣ ∣ ).

A cavity array as described in section 2.1.1, where each
cavity is doped with N four-level atoms as depicted in
figure 2, can form a quantum simulator for a Bose–Hubbard
model, c.f. equation (3), if all atoms interact in the same way
with the cavity mode and the number of excitations is
significantly lower than the number of atoms in each cavity.
In this regime, the dynamics generated by the Hamiltonian (4)

can be described in terms of polaritons, hybridised light-
matter quasi-particles that obey bosonic statistics. One species
of these polaritons does only occupy the atomic levels which
do not have a direct dipole transition to the atomic ground
state. These polaritons have been considered by Fleischhauer
et al [86] and are called dark state polaritons as they do not
lead to emission of radiation and are therefore long lived. The
latter property is obviously rather beneficial for quantum
simulation applications. The creation operators of the dark
state polaritons read

= - Wp
B

gS a
1

512( ) ( )† † †

where =g N g13 is a collective coupling rate,

s= å =S
N j

N
j12

1
1

21† creates a spin wave in the metastable

atomic levels and = + WB g2 2 . The dynamics of the dark
state polaritons decouples from the remaining species for a
suitable parameter regime, where the frequencies of the
species are sufficiently separated.

The coupling of the dark state polaritons to level ñ4∣ of
the atoms induces an effective interaction between all dark
state polaritons in one cavity. For W Dg g B24

2∣ ∣ ∣ ∣ the
strength of this interaction can be calculated in a perturbative
manner [257],

=
D

W

+ W
U

g Ng

Ng

2
. 6BH

24
2

13
2 2

13
2 2 2( )

( )

Similarly, the two photon detuning ε leads to an energy shift
of m = g BBH

2 2 for the polaritons that plays a similar role as
a chemical potential, see also section 4.1.1.

Provided the hopping rate of photons between cavities is
small compared to the frequency separation between the
polariton species, the hopping of photons translates into a
hopping of dark state polaritons at a rate [108]

=
W
+ W

J
Ng

J
2

7BH phot

2

13
2 2

( )

where Jphot is defined in equation (1).
As a consequence the Hamiltonian for the dark state

polaritons takes on the form of a Bose–Hubbard model as
introduced in equation (3), with =J JBH (c.f. equation (7)),

=U UBH (c.f. equation (6)) and m m= BH . Note that both, JBH
and UBH can be tuned by varying the intensity of the laser
driving W2. See also [106] for a generalisation to two
polariton species and [33, 188, 210] for alternative
nonlinearities.

Concepts for quantum simulators of Bose–Hubbard
models have also been put forward for a rather different
experimental platform based on semiconductor structures. We
discuss these in the next section.

2.1.4. Bose-Hubbard model with exciton polaritons. An
interaction of the form as in the Bose–Hubbard model, see
equation (3), was also shown to exists and analysed for
polaritons formed by photons and excitons of a quantum well
[248]. The Hamiltonian describing the interactions between
the photons of one cavity mode and the excitons of the

Figure 2. The level structure and the possible transitions of one atom,
wC is the frequency of the cavity mode, Ω is the Rabi frequency of
the driving by the laser, g13 and g24 are the parameters of the
respective dipole couplings and δ, Δ and ε are detunings.
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matching wave-vector here reads,

w w= + + + +H b b
U

b b bb a a g ab a b
2

, 8X
X

C ( ) ( )† † † † † †

where a a( )† creates (annihilates) a cavity photon and b b( )†

creates (annihilates) an exciton. The excitons have transition
frequencies wX , interact with each other at a strength UX and
couple to photons at a strength g. An anharmonic exciton-
photon coupling that depends on the exciton oscillator
strength saturation density can typically be neglected
compared to the interaction between excitons [248].

In a so called ‘strong coupling regime’ where g is larger
than the linewidth of the cavity and the excitons, polaritons,
i.e. hybridised light-matter excitations, become the elemen-
tary excitations of the system. These have annihilation
operators

q q
q q

= +
= -

+

-

p a b

p a b

cos sin

sin cos , 9

( ) ( )
( ) ( ) ( )

and frequencies

w
w w w w

=
+


- +


g

2 2
10X C C X

2 2( )
( )

with q = + Dg gsin 2 2( ) ˜ , q = D + Dgcos 2 2( ) ˜ ˜

and w w w wD = - + - + gC X C X
2 2˜ ( ) .

Since g UX the dynamics of both polariton species
decouples from each other and the interaction between
excitons leads to an interaction - - - - -U p p p p2p( ) † † with

q=-U U cosp X
4( ) for the lower polaritons -p . These interac-

tions can have a strength comparable or even larger than their
linewidth due to the strong interactions of the excitonic
components of the polaritons. Ways to enhance these
polariton-polariton interactions via Feshbach type resonances
between polariton pairs and bi-excitons have been explored
by Carusotto et al [41].

By confining the light modes in a periodic structure, a
lattice model as given in equation (3) can be generated [37].
The periodic confinement for the photons can thereby be
either a photonic crystal or a structure of connected micro-
pillars. Such polariton-polariton interactions and their inter-
play with polariton tunnelling between lattice sites has
recently been investigated in a self trapping experiment [1],
see section 2.1.8 for a more detailed discussion.

Besides Bose–Hubbard physics, most of the research
effort on lattice models with optical photons has considered
scenarios where the photons couple to one two-level system
in each cavity. We review these approaches in the next
section.

2.1.5. Jaynes-Cummings-Hubbard model. An effective
repulsive interaction between photons or polaritons can also
be generated by doping a cavity with one atom of which only
one internal transition couples to the cavity resonance mode.
This situation of a two-level emitter coupled to a single cavity
mode is described by the celebrated Jaynes–Cummings model

[127],

w w= + ñá + ñá + ñáH a a e e g a g e a e g ,
11

JC
C 0 ∣ ∣ ( ∣ ∣ ∣ ∣)

( )

† †

where wC and w0 are the frequencies of the cavity mode and
the atomic transition, g is Jaynes–Cummings light-matter
coupling, a† is the creation operator of a photon in the
resonant cavity mode, and ñ ñg e∣ (∣ ) are the ground (excited)
states of the two level system. Since the energy of a photon
wC and the atomic transition energy w0 are much greater than
the coupling g, the number of excitations is conserved by the
Hamiltonian (11). Hence it can be diagonalised for
each manifold with a fixed number of excitations n separately.
The energy eigenvalues En for n excitations read =E 00

and w= +  + D DE n ngn C 2
2

4

2

for n 1, where

w wD = - C0 . As a consequence, the energy of the lowest
state with two excitations is not twice the energy of a single
excitation state and their difference

= - = +
D

- +
D

-
D- -U E E g g2 2

4
2

4 2
12

JC 2 1
2

2
2

2

( )

plays the role of an effective on-site repulsion that can be
tuned via the detuning Δ. Photon blockade due to the
effective repulsion (12) has been observed for an individual
atom [26], quantum dots in photonic crystals [75, 77, 207]
and a circuit quantum electrodynamics (circuit QED) setup
[32, 152], see also section 3 for further details.

The concept of photon blockade in a Jaynes–Cummings
model can also be explored for higher excitation numbers,
where the difference between the energy of +n 1 excitations,

+
-En 1, and the energies of n excitations, -En , and a single

excitation, -E1 , should be considered. For D = 0 one finds

= - + = + - ++
- - -U E E E g n n1 1 ,

13
JC n n n; 1 1( ) ( )

( )

so that the interaction energy per excitation decreases with
growing excitation number n, U n g nJC n; for n 1. The
degrading of the anharmonicity of the spectrum of the
Jaynes–Cummings model at high excitation numbers was
observed in a self-trapping experiment [204], see
section 2.1.8, and the resulting breakdown of the photon
blockade effect was investigated by Carmichael [38] as an
example for a dissipative quantum phase transition. He found
the transition to be first order, as indicated by a bi-modality of
the Q-function, except for a critical value of drive strength for
zero drive detuning, where it is a continuous second order
transition.

In an array of cavities where each cavity is doped with a
single two-level emitter that is coupled to the light mode as
described by equation (11), the effective repulsion of
equation (12) will suppress the mobility of excitations in a
similar manner as the on-site interactions in the Bose–
Hubbard model since the lowest energy for two excitations in
one cavity is -E2 and moving one additional excitation to a
cavity requires an extra energy of UJC. This setup has first
been investigated by Angelakis et al [4] and Greentree et al
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[93]. The full effective many-body model in a cavity array
that is based on the effective interaction (12) has been coined
Jaynes–Cummings-Hubbard model and reads,

å å= - +
á ¢ñ

¢


 
 H H J a a H.c. , 14JCH

R
R
JC

JC
R R

R R
,

( ) ( )†

where

R labels the site of a cavity. Each cavity contains one

atom interacting via the Jaynes–Cummings interaction with
the cavity mode and photons tunnel between neighbouring
cavities at a rate =J JJC phot. The dispersive regime of the
Jaynes–Cummings-Hubbard and Rabi-Hubbard model was
investigated in [262].

Multiple two-level atoms per cavity. Effective many-body
physics based on the Hamiltonian (14) can not only be
observed for a single two level system in each cavity, as
assumed in equation (11), but also for setups with several two
level systems per cavity. Such a model can describe photonic
crystal micro-cavities doped with substitutional donor or
acceptor impurities. This approach to implementing effective
many-body models, which can have suitable parameters, has
been proposed in [186]. The phase transitions of a model with
several two level systems in each cavity have also been
studied in [157, 212], see section 4 for further discussions.

2.1.6. Spin models. Although it is not the main topic of this
review, we note here that coupled cavity arrays have also
been considered for the simulation of spin lattice
Hamiltonians [4, 8, 92, 109, 112]. Here the internal levels
of the atoms in the cavities represent the spin degrees of
freedom and interactions between spins can be mediated via
off-resonant couplings to collective photon modes
[8, 92, 109, 112, 262].

After having discussed the main strands of the theory
work on simulating quantum lattice Hamiltonians with optical
photons, we now take a closer look at the requirements and
challenges for implementing sthese approaches in
experiments.

2.1.7. Experimental requirements for lattice models.
Electromagnetic excitations, including polaritons and
photons, inevitably couple to the electromagnetic vacuum
that can not be excluded from any experiment. These
excitations will therefore always by limited to a finite
lifetime or trapping-time. In order to be able to explore
their dynamics, they need to be kept in the experimental
sample for a time that exceeds the timescales associated to the
kinetic and interaction energies. Denoting the rate of photon
losses from the cavities by κ and the rate of spontaneous
emission for the atoms by γ, one needs

k g k g> >U J U J, , or , , 15BH BH JC JC ( )

for effective Bose–Hubbard or Jaynes–Cummings-Hubbard
models. In terms of the light matter couplings, meeting the
conditions (15) requires both transitions to operate at high
cooperativity for single photons, kgg13

2 and kgg24
2 , for

the Bose–Hubbard model, or a strong coupling regime,
k gg , for the Jaynes–Cummings-Hubbard model. For the

approach to realise a Bose–Hubbard model as explained in

section 2.1.2 the condition gD > is also needed. The fact
that for this model only the product of the two decay rates κ
and γ needs to be bounded can be understood by realising that
the relative contributions of the photonic and atomic
components in the dark state polaritons, c.f. equation (5)
can be varied to avoid the faster decay channel and optimise
their lifetime.

An alternative approach to the photon blockade effect
was discovered in a two-site Bose–Hubbard system where a
resonantly driven nonlinear cavity is tunnel-coupled to an
auxiliary cavity. Remarkably this leads to anti-bunched
output photons even if kU [167] but requires low rates
of pure dephasing *g [80]. The effect is due to a destructive
interference of two excitation paths as can be seen from an
expansion in excitation numbers at low drive intensities [17].
The direct path to generate a second excitation in cavity one
via the coherent input, ñ  ñ1, 0 2, 0∣ ∣ , destructively inter-
feres with the excitation path where the first excitation tunnels
to the second cavity, ñ  ñ1, 0 0, 1∣ ∣ , a second excitation is
generated in cavity one via the drive, ñ  ñ0, 1 1, 1∣ ∣ , and the
excitation in cavity two tunnels back to cavity one. Its origin
in an interference of excitation paths explains why this photon
blockade effect requires that the nonlinearity exceeds the rate
of pure dephasing *gU . Despite these requirements for an
experimentally suitable technology, there has already been
significant progress as we discuss next.

2.1.8. Experimental progress. Demonstrating coherent
coupling between high finesse optical resonators with low
enough disorder and light-matter interactions in the strong
coupling regime at the same time remains an experimental
challenge at the time of writing. Yet, coupled arrays of
photonic band-gap cavities in photonic crystal structures that
are suitable for quantum simulation applications have been
built with 10-20 cavities [126, 175]. A further possibility to
engineer a tunnel coupling between adjacent cavities is to
connect these via waveguides that come close to each other at
a coupling point [162]. In this way a controllable coupling
can be combine with a small mode volume but open cavity
that allows to strongly couple laser trapped atoms to its
resonance modes.

Realization of the Jaynes–Cummings-Hubbard model
with trapped ions. A minimal version of the Jaynes–
Cummings-Hubbard model with two lattice sites has been
realised with trapped ions [244]. Here the motion of the ions
was employed to implement the harmonic degree of freedom
thus replacing the cavity modes and the internal levels of the
ions represent the two-level systems. Hence the creation and
annihilation operators aj

† and aj here describe phonons rather
than photons. In the experiment, an adiabatic sweep from a
regime dominated by the on-site repulsion UJC to a regime
dominated by the tunnelling JJC was performed via varying
the detuningΔ by tuning the frequency of a laser that drives a
red side-band transition for the ions. The mobility of the
polaritons in the tunnelling dominated regime and the
suppression of their mobility in the interaction dominated
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regime was then shown by measuring their on-site number
fluctuations.

Self-trapping experiments. The interplay of interactions
and tunnelling between adjacent lattice sites has also been
investigated in two experiments with two coupled resonators
[1, 204]. These experiments explored self-trapping effects in
regimes of high excitation densities, an interaction phenom-
enon that already becomes accessible for moderate interac-
tions between individual excitations. The effect appears for
two coupled resonators with a strong imbalance of excitation
numbers, where the interaction energies per excitation differ
between both resonators by an amount that exceeds the rate of
inter-resonator tunnelling.

For a nonlinearity of the form -Un n 1( ) [n is the
number of particles], which has been realised in an
experiment with exciton polaritons in two coupled Bragg
stack micro-pillars [1], the interaction energy per particle is

-U n 1( ) and self trapping occurs for high particle densities
but ceases as the particle number decays. In their experiment,
Abbrachi et al [1] thus observed a transition from a self-
trapped regime to a regime of excitation oscillations between
the resontors as the particle number decreased over time due
to dissipation, see figures 3(a)–(c).

For interactions as present in the Jaynes–Cummings
model, the interaction energy per excitation degrades as the
number of excitations grows, see equation (13). One thus
observes oscillations of excitations between both resonators
for a strong initial excitation number imbalance [229]. This
has been seen by Raftery et al in an experiment with two
coupled superconducting coplanar waveguide resonators that
each interact with a transmon qubit [204], c.f. Section 3. As
the excitation number decreased a transition to the self-
trapped regime was observed, see figures 3(d)–(e).

After reviewing work on the simulation of quantum
lattice models, we now turn to discuss efforts towards
quantum simulators for continuum models. Importantly, for
photons at optical frequencies these approaches face less
experimental challenges.

2.2. Continuum models in optical fibers

For optical frequencies, building mutually resonant cavities of
sufficient finesse is very challenging. This can be appreciated
by observing that the largest achievable atom-photon cou-
plings reach 1–10 GHz [254]. Hence disorder in the reso-
nance frequencies of the cavities needs to be suppressed to
109 Hz or below, which corresponds to a disorder in cavity
dimensions below 10−6 times the wavelength of the trapped
photons. A possible alternative to cavity arrays are therefore
one-dimensional waveguides, which avoid the need to build
mutually resonant cavities but nonetheless feature a large
light-matter coupling due to a tight confinement of the light
modes in transverse directions. Moreover, in contrast to lattice
structures, such devices emulate a different class of quantum
many-body models. The probably most prominent repre-
sentative of this class is the Lieb-Liniger model,

⎡
⎣⎢

⎤
⎦⎥


ò y y y y= ¶ ¶ +H dz

m

g

2 2
16LL

L

z z
0 eff

2 2( )( ) ˜ ( ) ( )† †

which describes bosons of effective mass meff in one
dimension which interact via a contact interaction of strength
g̃ (ÿ is Planck’s constant). In equation (16), L is the length of
the waveguide and ψ the field describing the polaritons.

All ground state features of the Lieb-Liniger model [166]
are characterised by a single, dimensionless parameter

=G m g N Lpeff
2˜ ( ) [Np is the particle number], that quan-

tifies the effective interaction strength between the particles.
For weak interactions, i.e. <G 1∣ ∣ , the bosons are in a
superfluid state. In contrast, in the strongly correlated regime

G 1∣ ∣ , they form a Tonks-Girardeau gas [91] of impene-
trable hard-core particles. A characteristic feature of this
regime is that the density-density correlations

y y y y¢ =
á ¢ ¢ ñ

á ñá ¢ ñ
g z z

z z z z

n z n z
, 172 ( ) ( ) ( ) ( ) ( )

ˆ ( ) ˆ ( )
( )( )

† †

with y y=n z z zˆ ( ) ( ) ( )† vanish for = ¢z z and exhibit Friedel
oscillations [87] for - ¢z z∣ ∣ finite. The Friedel oscillations

Figure 3. Self-trapping experiments: (a) Set-up of two coupled micro-pillars containing Bragg stack cavities that couple via an overlap of
their trapped photon modes [1]. Polaritons are initially generated in the left pillar. (b) Collective oscillations of the polaritons between both
pillars as measured by the emitted intensities for moderate initial polariton imbalance. (c) Self trapped regime where the initial polariton
imbalance is strong enough to suppress collective oscillations. (d) Set-up of two coupled superconducting resonators that each interact with a
transmon qubit [204]. (e) Phase diagram as observed in the experiment [204] with collective oscillations for large initial imbalance that are
suppressed as the imbalance decreases. Plots (a), (b) and (c) adapted with permission from [1], copyright 2013 Nature Publishing Group, and
plots (d) and (e) adapted with permission from [204].
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indicate a crystallisation of the particles by showing that they
prefer to occur at specific separations from one another. For
further information about the physics of interacting bosons in
one dimension we here refer the reader to the review by
Cazalilla et al [44] and now proceed to discussing realisations
of this physics with interacting photons.

2.2.1. Lieb-Liniger model with dark-state polaritons. A
realisation of the model (16) with dark-state or slow-light
polaritons has been proposed by Chang et al [45]. The
approach generalises the concept as explained in section 2.1.2
to continuous models and combines it with a so called
‘stationary light’ regime [15] generated by two counter-
propagating control fields. A possible implementation could
be a hollow-core photonic crystal fibre filled with a gas of
Doppler cooled atoms [14], see figure 4, or atoms trapped in
the evanescent field of an optical fibre that is tapered down to
a diameter comparable or below the wavelength of the
employed light [249].

An approach to exploiting unitary as well as dissipative
interactions has been introduced by Kiffner et al [138] by
decomposing the field ψ into momentum modes. The operator
that excites a dark-state polariton in momentum k is here
defined as

åy q
q

s=
+

-
m

m
+ - +

=

- m
a a

N
ecos

2

sin
, 18k

k k k k
N

ikz

1

12c c ( )

where kc is the momentum of the control fields, q =sin
+ WN g Ng 213 13

2 2 , q = Wcos 2 c + WNg 213
2 2 and

såm m
-

=
- mN eN ikz1 2

1
12 describes a spin coherence. The

dynamics of the dark state polaritons can be described
in terms of their density matrix rD. Neglecting single
particle dissipation which can be sufficiently suppressed
for suitable parameters, rD obeys the equation of motion
[138, 139],

 r r r r= - + +iH i H , 19D D D Deff eff˙ ( )†

where =H HLLeff with effective mass = -meff

d q+ WNg c2 2 cos13
2 2 2 2( ) ( ) and a complex interaction con-

stant  q q w g= D - D +g Lg i2 cos cos 224
2 2 2

42˜ ( ). Here c is
the speed of light. The term

 òr y r y= - g dzIm . 20D

L

D
0

2 2( ˜) ( )†

describes correlated decay processes, where always two
polaritons are simultaneously lost. Equation (19) thus has the

form of a Lindblad master equation where the jump operator
describes correlated decays of polariton pairs.

For the realisation as described by equation (19), the
absolute value of the Lieb-Liniger Parameter is

d g
=

D +
G

g g L N

c N4
21

p

13
2

24
2 2

2 2
42
2

∣ ∣
∣ ∣

( )

and is maximal for purely dissipative (D = 0) interactions
between the polaritons [138], see also [102].

The strongly correlated regime with G∣ ∣ larger than unity
thus becomes accessible for an optical depth per atom that
exceeds 160. For the density-density correlations, one finds

p= -g z z N G, 1 1 4 32
ph
2 2 2( ) ( ) ( ∣ ∣ )( ) for = ¢z z which

vanishes in the limit  ¥G∣ ∣ . Moreover, in this strongly
correlated regime, the ground state of this generalised Lieb-
Liniger model is the same as in the original model with
repulsive interaction [70], indicating a crystallisation of the
polaritons.

A generalisation of the above approaches to a situation
with two atomic species filling the hollow core fibre, c.f.
figure 4, was considered by Angelakis et al [5]. These
conditions give rise to two polariton species y1 and y2 that
are each described by a Lieb-Liniger Hamiltonian as in
equation (16) and in addition are subject to a density-density
interaction of the form

ò y y y ydzV , 22
L

0
12 1 1 2 2 ( )† †

with strength V12 [5]. The scenario can thus emulate Luttinger
liquid behaviour and allows for exploring an analogue of
spin-charge separation due to the mapping between hard-core
bosons and free fermions in one dimension [91]. Subse-
quently applications of this approach to simulate Cooper
pairing [122] and relativistic field theories [6] have been
investigated, see also [190].

2.2.2. Polariton correlations and dynamics. For the above
approaches to Lieb-Liniger physics with dark state polaritons,
the effect of dissipative interactions and the build-up of
Friedel oscillations was studied numerically in [140].
Moreover photonic transport in a fibre as sketched in
figure 4 was studied in [100, 102] via a Bethe ansatz
solution for the driven Lieb-Liniger model where the setup
was shown to act as a single photon switch for repulsive
interactions and able to support two-photon bound states
for attractive interactions. As we will discuss next, there
has already been significant progress in experimental
observations of the physics of such continuous one-
dimensional models.

2.2.3. Experimental progress. There has been substantial
progress towards realising quantum many-body systems of
strongly interacting photons with optical fibres, although the
simulation of a Lieb-Liniger model appears to still pose
challenges. Laser-cooled 87Rb atoms have been loaded int a
hollow core photonic crystal fibre by Bajcsy et al [14] to
demonstrate all optical switching. Via a switching beam

Figure 4. One dimensional waveguide, here a hollow core fibre
doped with N atoms that have the internal level structure depicted in
figure 2. Blue arrows represent classical control fields whereas green
arrows represent quantum probe fields.
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coupled to the transition «2 4, see figure 2, the initial
transmission of a beam coupled to the transition «1 3 was
reduced by 50%. Another approach trapped laser-cooled
neutral atoms with a multicolour evanescent field surrounding
an optical nano-fibre and showed appreciable coupling of the
atoms to fibre guided light modes [249]. The concept was
then developed further to demonstrate switching of optical
signals between two optical fibres [194] and nanophotonic
optical isolators [224]. As achieving sufficiently strong
optical nonlinearities for simulating strongly correlated
quantum many-body systems with optical photons remains
a challenge in these devices, atomic Rydberg media are now
being considered more intensely.

2.3. Polaritons in ensembles of rydberg atoms

For generating stronger interactions between polaritons,
ensembles of Rydberg atoms have more recently received
increasing attention. Here the large dipole moment of Ryd-
berg atoms leads to large van der Waals interactions between
two atoms that scale proportional to the sixth power of the
principal quantum number. These interactions lead to an
effect called Rydberg blockade which describes a situation
where a driving field cannot generate a second Rydberg
excitation in the vicinity of a Rydberg excitation due to these
strong forces. Reviewing the development in this branch of
research is beyond the scope of this article and we thus refer
the interested reader to a series of excellent recent reviews
[46, 115, 171, 218, 221] and references therein.

3. Microwave photons in superconducting circuits

In the quest for realising strong effective photon-photon
interactions, superconducting circuits supporting elementary
excitations in the form of microwave photons have received
increasing attention as they offer very favourable properties
for this task.

Importantly the wavelength of microwave photons are
about 10 mm. Therefore resonators that trap them are of a
similar size and the accuracy of available micro-fabrication
techniques is sufficient for producing multiple resonators of
the same resonance frequency on the same chip. More pre-
cisely, any residual disorder in resonance frequencies is well
below typical values for their mutual coupling [246]. In this
sense, building large, coherently coupled resonator arrays of
sufficient finesse is for microwave photons significantly less
challenging than in the optical domain.

Free, that is non-interacting photons are in this technol-
ogy supported by various forms of LC circuits composed of
an inductance and a capacitance. In these, current and voltage
oscillations occur together with associated oscillations of
electric and magnetic fields. For the appropriate dimensions
of these circuits, their elementary excitations are microwave
photons with frequencies that remain below the super-
conducting gap but are large enough to keep thermal excita-
tion numbers vanishingly small at cryogenic temperatures.

The employed LC circuits are thereby built as so called
lumped element versions, with dimensions smaller than the
wavelength of the explored photons, or as so called coplanar
waveguide resonators. The latter can be viewed as a flattened
version of a coaxial cable with three conductors patterned in
parallel on a chip. Whereas the two outer conductors are
grounded, the central conductor carries an electric signal that
thus leads to a time and space dependent voltage drop—an
electromagnetic field—between the central and outer con-
ductors, see figure 5. The structure thus acts as a waveguide
for microwave photons. A discrete spectrum of resonances
can then be engineered by cutting the central conductor at two
points so that capacitances form and enforce nodes of the
current profile leading to anti-nodes of the voltage modes.

As LC circuits are harmonic oscillators, their excitations
do not interact with each other. For applications as quantum
simulators, nonlinear elements in the circuit are thus highly
desirable. These are provided by Josephson junctions and the
circuit elements featuring one or multiple Josephson junctions
are usually called a superconducting qubits [65, 176]. There
are two physical processes that determine the physics of a
Josephson junction and hence a superconducting qubit, the
Coulomb interaction between Cooper pairs at both sides of
the junction that is determined by the junction’s capacitance
(including a possible shunt capacitance) and the tunnelling of
Cooper pairs through the junction as quantified by the
Josephson energy.

In the so called charging regime, as generated by a low
capacitance junction, the energy eigenstates of the qubit are
characterised by the difference in the number of Cooper pairs
at both sides of the junction. Here the qubit with its strongly
anharmonic spectrum can be interpreted as a matter comp-
onent, playing a similar role as a two-level atom coupled to
optical photons in the approaches discussed in section 2. Such
scenarios have been investigated intensively following an
influential experiment in 2004 by Wallraff et al [252] that
showed coupling between a superconducting qubit in the
charging regime and a coplanar waveguide resonator, with a
very high ratio of coupling strength to dissipation rates. Due
to the analogies to cavity quantum electrodynamics (QED),
this line of research was coined circuit-QED [231] and

Figure 5. A coplanar waveguide resonator formed by three
superconducting lines on a chip. The resonator can be excited via a
microwave tone applied to the central conductor, which is
intersected by two capacitances that play a similar role as the mirrors
in a Fabry-Pérot cavity. The voltage profile of a resonance mode is
indicated by the sinusoidal lines.
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initially explored scenarios with direct analogies in optical
cavity QED [22, 32, 84, 119, 152]. The strong coupling
coupling strength between qubit and resonator, that is
achieved in these setups, results from the large dimensions of
the superconducting qubits ( m~1 m) leading to large dipole
moments and from the strong confinement of the electro-
magnetic field between the superconducting wires of the
coplanar waveguide resonators.

Superconducting qubits have been considered in various
forms Besides the regime where their eigenstates are mostly
determined by the charge degree of freedom, so called phase
qubits and flux qubits have been investigated intensively.
Rather than discussing all these types in detail we here refer
the reader to excellent reviews of this matter
[51, 64, 176, 197].

To improve robustness against dephasing noise induced
by fluctuating background charges on the chip, novel designs
for superconducting qubits have been developed within the
last decade. The currently most prominent version is the
transmon qubit [149], where the charging energy due to
Coulomb interaction of Cooper pairs is reduced by shunting
the junction with a large capacitance. Further improvement of
the coherence times for transmon qubits coupled to super-
conducting resonators has recently been achieved by building
three-dimensional resonators [142, 196]. This design is based
on a qubit only made out of two superconducting islands
connected by a Josephson junction that is kept inside a three-
dimensional cavity machined out of aluminium which
becomes superconducting at the employed cryogenic tem-
peratures. Experiments have already successfully explored
quantum many-body physics with multiple qubits in one
three-dimensional resonator, see section 3.5.1. Before
reviewing quantum simulator designs in this technology we
briefly discuss the quantum description of superconducting
circuits.

3.1. Quantum theory of circuits

An excellent introduction to the quantum theory of super-
conducting circuits has been written by Devoret [63], so that
we here merely summarise the main aspects for completeness.

The dynamics of a superconducting electronic circuit can
be described in terms of so called node variables [63]. To this
end, the description is reduced to a set of independent vari-
ables by eliminating the remaining variables via Kirchhoff’s
laws, which state that the sum of all voltages around a loop
and the sum of all currents into a node should be zeros as long
as the flux through the loop and the charge at the node remain
constant. A convenient choice is then to associate to each
node of the network a variable òf = ¢ ¢

-¥
t dt V t

t
( ) ( ), where V

(t) is the voltage drop between the considered node and the
ground plane. f has dimensions of a magnetic flux and for
superconducting circuits can be linked to the phase of the
Cooper pair ‘condensate’ j via the relation j f j= 0, where

j = e20 ( ) is the reduced quantum of flux with e the ele-
mentary charge.

Using this language, the energy of an element between
nodes j and +j 1 of a circuit network is given by the

expressions, j j-
j

+
C

j j2 1
20

2

( ˙ ˙ ) for a capacitance C,

j j-
j

+L j j2 1
20

2

( ) for an inductance L and j j- - +E cosJ j j 1( )
for a Josephson junction with Josephson energy EJ (A dot
denotes a time derivative.). If two identical Josephson junc-
tions are included in a closed ring, such as in a super-
conducting quantum interference device (SQUID), they
behave like a single effective junction for currents across the
ring, where the Josephson energy of the effective junction can
be tuned via a magnetic flux threaded through the ring [176].

A quantum theory for a circuit can be derived in the
canonical way. One first sets up a Lagrangian  such that its
Euler–Lagrange equations are identical to the classical
equations of motion for the currents in the circuit. This
Lagrangian is then Legendre transformed into a Hamiltonian
by introducing canonical momenta pj for each node variable

via p =
f

¶
¶j

j
˙ [63, 191] and the theory is quantised by imposing

canonical commutation relations j p d= i,j l j l,[ ] .
Rather than in a chronological order, we here review the

work on employing networks of superconducting circuits for
the simulation of quantum many-body physics by starting
with those models that have been of central interest in the
optical domain as well, in particular the Bose–Hubbard and
Jaynes–Cummings-Hubbard models.

3.2. Bose-Hubbard models

For a lattice of coplanar waveguide resonators, that each
couple to a transmon qubit, see figure 6, it can be shown that
the dynamics of polaritons, formed by a superposition of
resonator and qubit excitations, is described by a Bose–
Hubbard Hamiltonian for suitable parameters [159, 160].
Since transmon qubits feature a moderate non-linearity due to
their large ratio of E EJ C, where = SE e C2C

2 ( ) is the
charging energy and SC the total capacitance of the qubit to
ground, they can be modelled by a nonlinear oscillator. A
single lattice site of the envisioned architecture is thus
described by the Hamiltonian

 



w w= - + +

+ +
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q q a a
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where a a( )† and q q( )† are creation (annihilation) operators of
the resonator and qubit and w = - E E8q C J

1 is the transition
frequency of the qubit. The coupling g between resonator and
qubit typically greatly exceeds the dissipation rates for both
modes. If moreover, this coupling is stronger than the
nonlinearity of the transmon qubits,  >g EC the qubit and
resonator modes hybridise and two species of polaritons with
annihilation operators +p and -p of the same form as in
equation (9) become the elementary excitations of the system
[160], see also section 2.1.4.

Neighbouring resonators can for example be coupled via
a mutual capacitance CJ, see figure 6, leading to the energy,

D = + - ++ + +
C

V J a a a a
2

24J
j j a j j j j, 1
2

1 1
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where D +Vj j, 1 is the voltage difference across the coupling
capacitance. In a rotating wave approximation, this coupling
leads to frequency shifts for both coupled resonators and a
tunnelling of photons between both resonators at a rate Ja.

In terms of the polaritons +p and -p , c.f. equation (9), the
Hamiltonian describing the circuit reads

= + +
+ -

H H H H , 25p p dd ( )

where


Hp are Bose–Hubbard Hamiltonians as in equation (3)
with interactions q= -+U E sinC

4( ) and q= --U E cosC
4( ),

polariton tunnelling q=+J J sina
2( ) and q=-J J cosa

2( ).
= å+- + + - -H U p p p pdd j j j j j, , , ,

† † describes a density-density inter-

action between both species with q q=+-U E sin cosC
2 2( ) ( ).

In the derivation of equation (25) the difference between the
frequencies of both polariton species has been assumed to
greatly exceed all interaction strength and tunnelling rates so
that all processes that would lead to a mixing of both species
are strongly suppressed, and a rotating wave approximation
has been applied.

Another approach to Bose–Hubbard physics in super-
conducting circuits [158] considers coplanar waveguide
resonators that have been made nonlinear due to Josephson
junctions or dc-SQUIDs inserted in their central conductors at
the location of a current node of the bare resonator [31, 158],
see figure 7 for a sketch. This approach leads to a Bose–
Hubbard model for a single excitation species. The approach
can also be interpreted as the SQUIDs and resonators being
ultra-strongly coupled [30, 31, 62, 158] so that the splitting
between the two normal modes in each resonator becomes
comparable to their frequencies and mixing processes
between excitations in both normal modes are truly absent.

The concept of making a coplanar waveguide resonator
nonlinear by inserting a Josephson junction or SQUID into its
central conductor at the location of a voltage node or current

anti-node can be taken a step further by inserting multiple
junctions into the central conductor. When applied to a
waveguide or very long resonator, this approach gives rise to
an extended ‘artificial’ medium, which is optically nonlinear
at the single photon level. The idea has been considered by
Leib et al [161], where a synchronised switching of the
architecture’s normal modes from a low excitation quantum
regime to a highly excited classical regime has been found.

3.2.1. Non-local interactions. In contrast to optical photons
interacting with solid state emitters or atoms, microwave
photons in superconducting circuits can be made to interact
non-locally [128]. That is a photon in one resonator can
scatter off a photon in a second, even spatially distant,
resonator. Such processes are described by cross-Kerr
interactions of the form

V a a a a , 261 1 2 2 ( )† †

where a a1 2( ) annihilates a photon in resonator 1(2). The
circuit that generates this type of interactions together with
correlated tunnelling processes is sketched in figure 8. The
dc-SQUID connecting the two resonators gives rise to an
energy contribution of j j- -E cosJ 1 2( ), where
j µ +a a1 2 1 2 1 2( ) ( ) ( )

† , and an expansion up to 4th order in
j j-1 2 leads to

⎟⎞⎠
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where = +E e C C2 2C J
2 [ ( )] and a = +C C C2J J( ) with C

the capacitance in each resonator and CJ the capacitance that
shunts the dc-SQUID. The coefficient ã can be made
vanishingly small by tuning the SQUID to the point, where
photon tunnelling via the SQUID and via the shunt
capacitance interfere destructively and cancel each other
[187]. When all couplings between neighbouring resonators
in a large lattice are built as in figure 8, one arrives at a Bose–
Hubbard Hamiltonian augmented by the cross-Kerr interac-
tions (26) and correlated tunnelling processes [128]. This

Figure 6. Chain of coplanar waveguide resonators (central and grounded conductors indicated by grey lines), that each couple to a transmon
qubit (balck boxes). Neighbouring resonators are coupled via a capacitance (indicated by the small gaps in the central conductor).

Figure 7. Sketch of array of coplanar waveguide resonators (only
central conductors are drawn), that are nonlinear due to a Josephson
junction (shunted by a capacitance) inserted into their central
conductor. All resonators couple to in- and output lines on the top or
bottom. The mutual coupling between the resonators is generated by
bringing them into close proximity at suitable points so that a mutual
capacitance and inductance forms [23]. Figure reproduced with
permission from [158], copyright 2012 IOP Publishing.

Figure 8. Circuit for a nonlinear coupler that gives rise to cross Kerr
interactions as specified in equation (26).
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scenario can give rise to a density wave type ordering, see
also section 4.

Lattice elements coupled by Josephson junctions have
furthermore been considered for the simulation of Anderson
and Kondo lattices [88] and tunable coupling elements [23].

3.2.2. Relation to josephson junction arrays. Bose–Hubbard
physics in superconducting architectures has been
investigated in the early 1990 already, well before the
realisations of the model in optical lattices. The investigated
structures consisted of Josephson junction arrays where
Cooper pairs could tunnel between superconducting islands
through the junctions and interact via Coulomb forces on each
island, see [78] for a review. The practical difference of the
new generation of networks discussed here is that the
individual network nodes are separated by larger distances
on the chip and can therefore be individually addressed via
control lines. The high precision control over the individual
nodes allows to suppress disorder much better than in
Josephson junction arrays, where it was a significant
limitation to experiments. Yet circuit-QED lattices also
allow to emulate further many-body models, such as the
Jaynes–Cummings-Hubbard model.

3.3. Jaynes-Cummings-Hubbard models

If the nonlinearities of the employed qubits are larger than all
other interaction and tunnelling processes in the circuit net-
work, its dynamics can no longer be approximated by a Bose–
Hubbard model for polaritonic excitations, but is described by
a Jaynes–Cummings-Hubbard model as given in
equation (14) [120, 229]. In this regime, hg EC and the
qubit is approximated by a two-level system, s -b and

s +b† in equation (23), which gives rise to a Jaynes–
Cummings model describing the individual lattice site.
Together with the tunnelling of microwave photons between
adjacent resonators as described in equation (24), this leads to
a Jaynes–Cummings Hubbard model for the entire lattice.

The approximation of a circuit QED system consisting of
a transmon qubit and a resonator by a Jaynes–Cummings
Hamiltonian has been investigated experimentally, where it
was possible to show the characteristic scaling of its non-
linearity with n , where n denotes the number of excitations
in the system [84]. In contrast to atoms, the approximation of
a superconducting qubit as a two level system needs to be
considered with much more care, in particular for transmon
qubits, where the increased robustness against charge noise
comes at the expense of a slightly reduced nonlinearity as
compared to charge qubits. Indeed the experiment [152] also
found corrections to the approximations by a two-level sys-
tem due to the finite nonlinearity of the qubit.

A Kagomé lattice of coupled coplanar waveguide reso-
nators that each interact with a superconducting qubit such
that individual lattice sites can be described by a Jaynes–
Cummings model has been investigated by Koch et al
[120, 147]. The approach approach considered three-port
coupling elements that are capacitively connected to the three
coplanar waveguide resonators that meet at each vertex.

These couplers lead to time-reversal symmetry breaking,
which is a prerequisite for accessing certain classes of
quantum many-body states such as fractional quantum Hall
states. We discuss quantum simulators for this class of sys-
tems in more detail in section 5.

A dimer of two capacitively coupled coplanar waveguide
resonators that are each capacitively coupled to a super-
conducting qubit has been investigated by Schmidt et al [229]
to explore a localisation-delocalisation transition from a self-
trapped phase to an oscillating phase as the interaction
strength between qubits and cavity modes crosses a critical
value. Discrepancies between the classical and quantum
prediction for this critical value have been resolved in [233].
This transition has later been observed in an experiment by
Raftery et al [204], c.f. section 2.1.8.

Moreover approaches to simulating spin systems in
coupled arrays of circuit cavities and superconducting qubits
have been put forward recently [9, 150].

3.4. Digital quantum simulations

In this review we focus our attention on quantum simulations
where an experimentally well controllable system is tuned
such that it emulates a specific Hamiltonian. This approach to
quantum simulation is termed analog quantum simulation. In
contrast, one can also employ a device where specific unitary
operations can be performed with high precision. A sequence
of such operations can then lead to the same dynamics as the
target Hamiltonian of a quantum simulation as can be seen via
Trotter’s formula. This approach of digital quantum simula-
tion is well amenable to devices that have been designed to
implement quantum gates and was recently demonstrated in
superconducting circuits to simulate spin [222] and fermionic
[20] Hamiltonians in one dimension as well as molecular
energies [192]. The theory for these approaches was worked
out in [113] and [10], see also [183] for a related theoretical
and [21] for related experimental work. Other approaches
considered the quantum simulation of the regime of s so
called ultra-strong light-matter coupling [62, 208, 209, 238]
in driven systems [16].

3.5. Experimental progress

The experimental progress towards assembling and control-
ling larger and larger networks of superconducting circuits
has been remarkable in recent years. Whereas most of the
efforts are aiming at implementations of quantum information
processing tasks, quantum simulation applications have
received increasing interested lately.

For quantum computation applications, three-qubit gates
have been demonstrated in 2012 [79, 173, 206]. More
recently, larger networks of coherently coupled qubits (up to
9 at the time of writing) with performance fidelities suitable
for surface code computation [19] and state preservation by
error detection in the repetition code [136] have been shown.
To boost the scalability of such networks, multilayer struc-
tures are now being built [34].
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For quantum simulation of quantum many-body systems,
very low disorder (below 10−4) has been shown for 12 cou-
pled coplanar waveguide resonators on a Kagomé lattice
[246] and large resonator lattices (more than 100 resonators)
have been built [120]. Weak localisation has been simulated
in a multiple-element superconducting quantum circuit [48]
and topological phases together with transitions between them
have been measured via the deflection of quantum trajectories
with two interacting qubits [216]. Moreover digital quantum
simulations of spin models including their mapping to non-
interacting fermions [20, 222] have been shown and a novel
quantum simulation concept employing an experimental
generation of Matrix Product States [193] has been demon-
strated for the Lieb-Liniger model [71]. There also have been
first few-site realisations of analogue quantum simulation
devices for Bose–Hubbard chains which may form building
blocks of larger scale quantum simulators with interacting
microwave photons.

3.5.1. Few-site Bose-Hubbard chains. A dimer of two
lumped element resonators has been empoyed by Eichler
et al to show quantum-limited amplification and entanglement
[72]. In their setup, both resonators are nonlinear because
their inductors are formed by a series of dc-SQUIDs and are
mutually coupled via a capacitance. Here a moderate
nonlinearity is desirable to allow for an appreciable
bandwidth of the amplification mechanism.

A chain of three capacitively coupled transmon qubits
has been realised inside a microwave cavity by Hacohen-
Gourgy et al [96]. Here all qubits couple dispersively to a
common resonance mode of the cavity and engineered
cooling and heating processes are generated by driving the
cavity resonance with red or blue detuned input tones. These
processes act as a quantum bath that can exchange energy and
entropy with the Bose–Hubbard chain but conserves its
excitation number, see also section 4.1.1. An extension to
more qubits in a common resonator for exploring dipolar spin
models has been considered in [56].

4. Quantum many-body dynamics and phase
diagrams

Besides their application as quantum simulators, the approa-
ches to generate effective quantum many-body Hamiltonians
discussed in this review, also call for investigations of the
many-body phenomena they give rise to. An important
question is whether the phase diagrams for the approaches as
discussed in sections 2 and 3 show any deviations from those
of the target models or what the phase diagrams of the novel
models motivated by these approaches are? We discuss these
questions in this section, see also related reviews by Tomadin
et al [242], Schmidt et al [230] and Le Hur et al [155]. As
most of the interest was initially focussed on equilibrium
regimes, we begin our discussion with these.

4.1. Equilibrium studies

Initial investigations of the phase diagrams of effective
Hamiltonians for interacting photons or polaritons in arrays of
coupled cavities [93, 148, 212] considered equilibrium sce-
narios by introducing a chemical potential, the physical rea-
lisation of which remains an open question, see section 4.1.1
for further discussion of this aspect. For the Jaynes–Cum-
mings-Hubbard model, these works addressed the immediate
question whether the phase diagram would show any differ-
ences to the Bose–Hubbard case due to the microscopic dif-
ferences related to the two component nature of the model
with atomic excitations and photons. Before discussing the
phase-diagrams of the most prominent models, we here first
elaborate further on the absence of a chemical potential for
photons and approaches to create such a potential.

4.1.1. Engineering a chemical potential for photons. Photons
can typically only bet trapped for limited times in optical or
microwave resonators. The achievable trapping times are
moreover comparable or even below the experimental
equilibration time-scales. In addition, the interaction of
photons with matter involves absorbtion and emission
processes. As a consequence of these properties, the
number of photons is usually not conserved during an
experiment and there is no equivalent to a chemical potential
for photons.

In some experimental situations thermalisation of
photons via scattering with phonons or repeated absorption-
emission cycles was achieved on sufficiently fast time-scales
so that a quasi-equilibrium builds up. Prominent examples for
such situations are the condensation of exciton polaritons
[57, 133, 135, 143, 237] in a semiconductor microcavity or
the number-conserving thermalisation and Bose–Einstein
condensation of a two-dimensional photon gas in a dye-filled
optical microcavity [144]. Despite the observation of the
characteristic features of Bose–Einstein condensation these
non-equilibrium cases are distinct from the equilibrium
situation [261] and creating a proper chemical potential for
light remains an open question.

Concepts for generating such a chemical potential for
photons have been proposed based on a parametric modula-
tion of the system’s coupling to its environment at a
frequency that exceeds the highest spectral component of
the environment [99]. Moreover, connections to regimes of
ultra-strong light matter coupling have been discussed as their
ground states can be viewed as containing a non-vanishing
photon number which is however not observable without
further manipulation [99, 226]. As the generation of a
chemical potential for photons remains a challenging task,
most discussions of equilibrium phase diagrams simply
introduced such a potential by hand. We start our discussion
of these works by reviewing those based on mean-field
approaches that are expected to be accurate in high
dimensional lattices.

4.1.2. Mean-field calculations for three dimensions. The first
study by Greentree et al [93] used a mean-field approach that
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is expected to become increasingly accurate with higher (three
or more) lattice dimensions. Introducing y = á ñaj as a
superfluid order parameter, a mean-field decoupling was
performed in the Hamiltonian (14) and a chemical potential μ
was added to get
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where z denotes the number number of neighbouring lattice
sites, i.e. z=6 for three dimensions. Depending on whether
the value of ψ that minimises the expectation value of H̃
vanishes or not, the system is in a Mott insulating state or
supports a super-fluid component. The resulting phase
diagram for the case where the transition frequency of the
two-level system w0 equals the cavity resonance frequency
wC, w wD = - = 0C0 , is reproduced in figure 9. The
analogous phase diagram for the Bose–Hubbard model had
already been calculated in the late 1980s by Fisher et al [85].
Using a fieldtheoretic approach, Koch and Le Hur showed
that the Jaynes–Cummings-Hubbard and Bose–Hubbard
models are in the same universality class and that Jaynes–
Cummings-Hubbard features multicritical curves, which
parallel the presence of multicritical points in the Bose–
Hubbard model [148].

Comparisons between the mean-field results and exact
calculations for small lattices have found that the Mott lobes
shrink in finite systems, similar to the Bose–Hubbard model
[177]. Moreover, the phase diagram of the Jaynes–Cum-
mings-Hubbard model changes substantially for ultra-strong
light matter coupling, where it maps to the transverse field

Ising model and features a discrete parity symmetry-breaking
transition [226].

4.1.3. Calculations for one and two dimensions. Whereas
mean-field approaches are expected to become increasingly
accurate for higher and higher lattice dimensions, ground
states and dynamics of one-dimensional systems can often be
efficiently calculated using numerical approaches based on
the Density Matrix Renormalisation Group (DMRG) [232].
For the approaches described in sections 2.1.2 and 2.1.5 the
ground state phase diagrams (after a chemical potential term
had been added) have been obtained with these techniques by
Rossini et al [212, 214], see figure 10. Here, the microscopic
origin of the nonlinearity in the explicit form of the atomic
level structure has been taken into account for the approach to
the Bose–Hubbard model, c.f. section 2.1.2, and deviations in
the phase-diagram of the model from the original Bose–
Hubbard model, c.f. equation (3), have been found due to
small atom numbers. Moreover, the existence of a glassy
phase due to non-vanishing disorder in the number of atoms
per cavity has been predicted.

Phase diagrams for one and two-dimensional systems
have also been calculated with a variational cluster approach
[2, 145, 146] or quantum Monte Carlo calculations
[116, 117, 199], and analysed differences between the
Bose–Hubbard and Jaynes-Cuminngs-Hubbard models due
to the composite nature of the excitations in the latter. An
analytic strong-coupling theory based on a linked-cluster
expansion for the phase diagram of the Jaynes–Cummings-
Hubbard model and its elementary excitations in the Mott
phase has been derived by Schmidt et al [227, 228].

Figure 9. Ground state phase diagram of the Jaynes–Cummings-
Hubbard model forD = 0 as obtained from equation (28) for a three
dimensional lattice with z=6. Note that the axes labels use a
different notation with β instead of g and κ instead of JJC. Figure
reproduced with permission from [148], copyright 2009 American
Physical Society.

Figure 10. Ground state phase diagram of the Jaynes–Cummings-
Hubbard model for D = 0 for a one-dimensional lattice. Note that
the axes labels use a different notation with β instead of g and t
instead of JJC. Left (right) column for N=1 =N 2( ) atoms per
cavity. The bottom row shows the compressibility k m= ¶ ¶n ,
where n is the average number of excitations per lattice site. Figure
reproduced with permission from [212], copyright 2007 American
Physical Society.
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Recent work has also predicted quantum phase transi-
tions in finite size and even single site systems of Rabi [124]
and Jaynes–Cummings models [123].

4.2. Non-equilibrium explorations

In contrast to ultra-cold atoms, photons or polaritons are only
trapped for considerably shorter times in the samples. On the
other hand photons can be produced and injected into the
device at low ‘cost’ and in large numbers. As moreover a
chemical potential for photons does not appear in nature but
needs to be carefully engineered, c.f. section 4.1.1, it appears
to be much more natural and feasible to explore quantum
many-body systems of interacting photons in driven scenarios
where continuous or pulsed inputs counteract dissipation. We
first consider pulsed input drives and discuss continuous
driving schemes afterwards.

4.2.1. Pulsed driving fields. Properties of the ground state
phase diagrams of Bose–Hubbard and Jaynes–Cummings-
Hubbard models can be investigated in non-equilibrium states
using the following concept. The system parameters are
initially tuned such that photon tunnelling between resonators
is strongly suppressed and on-site interactions are very strong.
Due to the nonlinearity of their spectra, an input pulse can
generate a single excitation in each lattice site and thus
prepare the system in a state very similar to a Mott insulating
state. Despite not being the ground state, this initial state is an
approximate eigenstate of the system for the chosen
parameters. By changing the parameters of the system
slowly enough to generate an adiabatic sweep, the system
will stay in this energy eigenstate, which will however change
its character and become very similar to the superfluid ground
state when the tunnelling is increased and nonlinearities are
decreased. This sequence has been analysed by Hartmann
et al [108] in terms of the fluctuations of the polariton number
in each lattice site and by Angelakis et al [4] for the excitation
number fluctuations in a Jaynes–Cummings lattice. Particle
number fluctuations are strongly suppressed in the Mott
insulating regime where particles are localised but become
finite in the superfluid regime where the particles become
delocalised.

A scenario similar to sudden quenches has been explored
by Tomadin et al [243], where, independently of the system
parameters, the cavity array was assumed to be initialised into
a direct product of single excitation Fock states for each
cavity by a short but intense input pulse. By exploring the
subsequent non-equilibrium dynamics, it was found that the
rescaled superfluid order parameter y n (n is the excitation
density) decays to zero in the Mott insulating but remains
finite in the superfluid regimes, see also [54] for analogue
results for lattices with disorder. Due to the possibilities of
local and single-site control offered by many setups for
resonator arrays, one can also explore quenches that are not
uniform across the lattice. For example if a bipartite lattice is
initially prepared in a superfluid regime in one half and a Mott
insulating regime in the other half, all excitations migrate to
the superfluid half upon switching on a small tunneling

between both parts [110]. This example shows that the
tendency of non-equilibrium quantum systems to explore all
the accessible Hilbert space, which typically results in the
formation of local equilibria [73], can lead to states which are
strongly inhomogeneous and not translation invariant pro-
vided the underlying system breaks such translation
invariance.

4.2.2. Continuous driving fields and driven-dissipative
regimes. Due to inevitable experimental imperfections,
photons dissipate after a relatively short time from the
quantum simulation devices described in this review. These
photon losses can be compensated for by continuously
loading new photons into the device via coherent or
incoherent input fields. This approach is very feasible as
photons are much easier and cheaper to produce as compared
to for example ultra-cold atoms [67, 68]. The emulated
quantum many-body systems are therefore most naturally and
feasibly explored in driven-dissipative regimes where input
drives continuously replace the dissipated excitations and the
dynamical balance of loading and loss processes eventually
leads to stationary states.

This mode of operation should not be viewed as merely a
means of compensating for an imperfection of the technology.
In fact, quantum many-body systems are much less explored
in such non-equilibrium scenarios than in equilibrium
regimes. Investigating driven-dissipative regimes of interact-
ing photons thus leads onto largely unexplored territory and
may lead to interesting discoveries. One may even search for
non-equilibrium phase transitions, that is points where the
properties of the stationary state of some driven-dissipative
dynamics change abruptly as one of the system’s parameters
is varied [137].

For investigations of driven-dissipative regimes, coherent
driving fields at each lattice site are often considered. To be
able to perform calculations with a time-independent
Hamiltonian, it is often useful to move to a frame that rotates
at the frequencies wd of the input fields. In this frame, the
frequency of a photon in each cavity (resonator), wr, is
replaced by the detuning between wr and the frequency of the
drive w w w D = -r r r d and similarly the transition
frequency of emitters in the resonators is replaced by their
detuning from the drive frequency, w w w D = -e e e d. A
field that continuously drives the cavity modes is, in this
rotating frame, described by an additional term in the
Hamiltonian,

⎛
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where Wj is the amplitude andjj the phase of the driving field
at lattice site j. Note that while a global phase of all diving
fields can be gauged away, the assumption of coherent drives
requires choosing a relative phase between each pair of
drives. For the dissipation, local particle losses are typically
assumed and modelled by Lindblad type damping terms [35].
Hence, the driven-dissipative models discussed here are
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described by master equations of the from
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where γ is the rate at which photons are lost from the device
and H the Hamiltonian of the considered model including
driving terms such as in equation (29) and written in a frame
that rotates at the frequencies of the driving fields. Note that
the form of the damping terms is invariant under the
transformation into this rotating frame. In our discussion of
stationary regimes of driven-dissipative quantum many-body
models, we first consider the Bose–Hubbard model.

4.2.3. Driven-dissipative Bose-Hubbard model. The driven-
dissipative regime of a single resonator that features a Kerr
nonlinearity for the cavity mode and thus corresponds to a
single lattice site of the Hamiltonian (3) has been studied by
Drummond and Walls [69] long before quantum simulation
applications have been considered. These initial studies aimed
to explore the physics of nonlinear polarisability and where
later extended to consider solid-state nanostructures for single
photon sources [81].

For a Bose–Hubbard model describing tunnel-coupled
resonators, that is driven by coherent input fields at all lattice
sites, one would expect that the field in the cavity array should
inherit the classical and coherence properties of the driving
fields provided their intensity is strong enough to dominate
over the effects caused by the nonlinearities. The boundaries
of this semi-classical regime have been calculated by
Hartmann [107] via a linearisation in the quantum fluctuations
around the classical background component, see figure 11.

In the regime of strong interactions or nonlinearities, the
number of excitations per lattice site is at most 1/2. This
bound becomes obvious in the limit of very strong
interactions, where each lattice site can be approximated by
a two-level system as higher excited states are far off
resonance to the drive. Yet, as a coherent field cannot
generate inversion [253] these two-level systems have an
excitation probability below 1/2. Consequently, Mott insulat-
ing regimes with commensurate filling can in this way not be
generated.

A lattice system with low particle density, more precisely
a system where the average inter particle spacing greatly
exceeds the lattice constant, can be viewed as an approx-
imation to a continuum system. The properties of a one-
dimensional driven-dissipative Bose–Hubbard model in the
strongly interacting regime should thus rather be compared to
a Lieb-Liniger model, c.f. equation (16).

To explore whether Lieb-Liniger physics can be
observed in such driven-dissipative regimes, Carusotto et al
[40] considered a five-site version of the Hamiltonian (3) and
investigated whether the characteristic energies of the
collective strongly correlated many-body states could be seen
in a spectroscopy analysis. They scanned the frequency of the
driving fields through the relevant range and found resonance
peaks at the transition-frequencies of the Hamiltonian (3).

Given the expected relations to the Lieb-Liniger model,
an interesting question is, whether a driven-dissipative Bose–
Hubbard model exhibits similar density-density correlations,
in particular whether a feature similar to Friedel oscillations
[87] can be expected. Spatially resolved density-density
correlations in the form of a g 2( )-function,
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where j and l label lattice sites, have been investigated by
Hartmann [107] via a numerical integration of equation (30)
with Matrix Product Operators [111, 232]. A spatical
modulation similar to Friedel oscillations was indeed found
for a non-vanishing relative phase between the driving fields
of adjacent lattice sites, see figure 12. As this phase off-set
generates a particle flux in the array, the strong anti-bunching
on-site g 1j j,

2( ) , slight bunching for neighbouring sites,

>+g 1j j, 1
2( ) , and anti bunching for further separated sites,

<g 1j l,
2( ) for - >j l 1∣ ∣ , indicates that a flux of particle

dimers extended over neighbouring sites flows through the
lattice. A similar signature was later also found for the driven-
dissipative Jaynes–Cummings-Hubbard model by Grujic
et al [95].

For a higher dimensional lattice, a mean-field approach
based on the exact single site solution by Drummond et al
[69] was used by Le Boité et al [153, 154] to predict mono —

and bistable phases, which emerge as a consequence of the
nonlinear nature of the mean-field equations, see figure 13.
The related dynamical hysteresis was then investigated in

Figure 11. Density of photons in the classical background (left) and
ratio of photon densities in the quantum fluctuations and classical
background (right), for relative phase of p 2 between adjacent
driving fields. A semiclassical description is justified for small values
in the right plot. Reproduced with permission from [107], copyright
2010 American Physical Society.

Figure 12. g j8,
2( ) for D = 0 and g> W >U in a driven-dissipative

Bose–Hubbard model. Right plot: Dependence of the correlations on
the relative phase between adjacent driving fields. Reproduced with
permission from [107], copyright 2010 American Physical Society.
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[43]. Yet other calculation techniques rather show a first order
phase transition in the regions where mean-field predicts a
bistable phase [174, 256].

In the limit of very large on-site interactions, the driven-
dissipative Bose–Hubbard model maps to a driven-dissipative
XY spin-1/2 model, the phase diagram of which has been
investigated with a site-decoupled mean-field approximation
[258]. Here, stationary state phases with canted antiferro-
magnetic order and limit cycle phases with persistent
oscillatory dynamics together with bistabilities of these two
phases, have been found.

Moreover, driven-dissipative phases of the Bose–Hubbard
model with cross-Kerr interactions as discussed in section 3.2.1
were calculated with a mean-field technique for higher [129]
and with Matrix Product Operators for one dimension [128].
For sufficiently strong cross-Kerr interactions and low enough
excitation tunnelling, the model exhibits a density-wave
ordering with + <g j j g j j, 1 ,2 2( ) ( )( ) ( ) , see figure 14.

In the studies discussed so far, the excitation dissipation
has been assumed to be caused by the electromagnetic
vacuum throughout. As has been investigated in [203], the
scenario changes substantially if squeezed dissipation is
considered, which does not obey a U(1) symmetry. We now
turn to discuss driven-dissipative scenarios for the Jaynes–
Cummings-Hubbard model.

4.2.4. Driven-dissipative Jaynes-Cummings-Hubbard model.
The coherence and fluorescence properties of a coherently
pumped driven-dissipative Jaynes–Cummings-Hubbard
model were explored by Nissen et al [189]. For short
arrays, the photon blockade regime was found to persist even
up to large tunnelling rates, whereas there is a transition to a
coherent regime for larger arrays as the tunnelling strength is

increased. This size dependence is due to the fact that
spectrally dense excitation bands only form in the limit of
large system sizes whereas for a small lattice, say a dimer, the
tunnelling causes a splitting of the spectral lines of single site
spectra that leads to a collective spectrum which still remains
anharmonic [189], see figure 15.

A comparative study of the features of driven-dissipative
Bose–Hubbard and Jaynes–Cummings-Hubbard models was
conducted by Grujic et al [95] and found quantitative
differences for the experimentally accessible observables of
both models for realistic regimes of interactions even when
the corresponding nonlinearities are of similar strength.

Further interesting effects appear for arrays where not
every resonator couples to a superconducting qubit but
nonlinear interactions only occur in regularly spaced lattice

Figure 13. Number of mean-field solutions for W D = 0.4,
g D = 0.2 and D > 0. Note that the notation wD = D is used in
the axes labels. Reproduced with permission from [153], copyright
2013 American Physical Society.

Figure 14. Order parameter Dn of a mean-field calculation for a
driven-dissipative Bose–Hubbard model with cross-Kerr interactions
as described in equation (26) in the U−V plane at zero hopping. If
the cross-Kerr term exceeds a critical threshold Vc, the steady state is
characterised by a staggered order in which D ¹n 0. Here we fixed
W = 0.75 and D = 0r , for which »zV 0.44c at U=0, while

»zV 5.73c in the hard-core limit (  ¥U ). In the inset we showDn
as a function of Ω and V at a fixed value of U=1. Here and in the
next figure the colour code signals the intensity of the order
parameter, while dashed green lines are guides to the eye to locate
the phase boundaries. Reproduced with permission from [128],
copyright 2013 American Physical Society.

Figure 15. Energy levels for the singe-excitation manifold of the
Jaynes–Cummings-Hubbard model for a single site (a), a dimer (b)
and a large array (c). The qubit transition frequency (Q) is chosen
resonant with the symmetric two-cavity state (S) of the dimer and the
bottom of the photon band of the array. Reproduced with permission
from [189], copyright 2012 American Physical Society.
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sites. This periodic arrangement leads to photonic flat bands,
see also section 5, where the role of interactions is enhanced
and polaritons can become incompressible [25, 42]. Experi-
mentally, similar flat bands have been generated in coupled
micro-pillars, each containing a cavity formed by two
distributed Bragg reflectors [13], where condensation of
polaritons in the flat band was observed. Such micro-pillars
have also been coupled in a honey-comb lattice where they
exhibit edge states similar to graphene structures [195], c.f.
section 5. Whereas we have so far discussed scenarios with
coherent driving fields, cavity arrays with incoherent input
fields have been considered as well.

4.2.5. Regimes of incoherent pumping. In the above
discussed driven-dissipative systems of interacting photons,
the driving fields were always assumed to be of a coherent
nature. Therefore any coherence between lattices sites that is
found in the system needs to be attributed at least in part to
the coherent inputs. To explore whether coherence can
spontaneously develop for non-equilibrium photonic systems,
incoherent input fields or pumping of higher excited states
and subsequent decay [179] should be considered. A study for
an incoherently pumped Jaynes–Cummings-Hubbard model
found that the scaling of the correlation length with the
hopping rate JJC changes as the hopping rate becomes larger
than the light-matter coupling g [219]. See also the remarks in
section 4.1.1 about engineering effective chemical potentials.
For further work on non-equilibrium photon condensation,
see [3, 144, 236], as well as the reviews [39, 235] and
references therein.

After reviewing approaches that considered a uniform
drive intensity for all lattice sites, we now turn to discuss
scenarios where the input can be more intense at one end of a
chain. This setup naturally leads to the analysis of transport
properties.

4.2.6. Transport studies. Transport of photons in a
waveguide that are scattered at a localised emitter has been
theoretically explored via scattering theory [165, 187, 234],
see also extensions to multiple emitters [156], and
numerically using the Density Matrix Renormalization
Group (DMRG) [170]. Experimentally such scattering
effects have been explored with Rydberg atoms
[46, 115, 171, 218, 221] and one [12, 118] or two [247]
superconducting qubits coupled to an open coplanar
waveguide resonator. The recent developments in this
direction of research are summarised in the review by Roy
et al [218]. In our discussion in relation to quantum
simulation we here therefore focus on transport studies of
the driven-dissipative regime of a quantum many-body
system on a one-dimensional chain or two-dimensional
band. Here, a particle flux can either be generated by
pumping locally at one end of the chain (the band) or by
implementing a phase off-set between the driving fields at
adjacent resonator in the direction of transport [107].

A phase transition in the sense that two eigenvalues of
the Liouvillian approach zero has been found for a spin chain

with incoherent pump at one and losses at the opposite end by
Prosen and Pižorn [200]. Hafezi et al studied the propagation
of few photon pulses in the polaritonic Lieb-Lininger model
described in section 2.2 by decomposing their wave-function
in zero-, singe- and two-photon components [100, 102] and
found that for an input that drives a single- or two-photon
transition, the output will contain anti-bunched or bunched
photons. A different scenario with a coherent input at one end
of the chain and uniform dissipation in all lattice sites has
been studied by Biella et al [24], where the transport was
found to be strongly influenced by the many-body resonances
related to extended eigen-states of the chain. These transport
properties can be interpreted as a generalisation of photon
blockade, c.f. section 2.1.3, to extended one-dimensional
systems. More recently, Mertz et al [182] explored two
scenarios, a source-drain setup with coherent drive at one end
and enhanced dissipation at the opposite end of the chain, as
well as the regime where relative phases between coherent
inputs at neighbouring lattice sites generate a current in the
presence of uniform dissipation. Employing a Gutzwiller
mean-field approximation, the study considered two dimen-
sional lattices with periodic boundary conditions in the
direction perpendicular to the direction of transport. In
addition to the dependencies of the current on the many-
body spectrum it found that transport can be inhibited by
strong dissipation at the ‘drain’-end by the quantum Zeno
effect.

A relative phase between the coherent input fields at
different locations can already lead to interesting effects when
considered for the two outer resonators of a three-site model,
which we turn to discuss now.

4.2.7. Josephson interferomenter. The interplay of coherent
tunnelling and on-site repulsion has been theoretically
explored in three-cavity setups where the two outer cavities
where driven by coherent fields the relative phase of which
was varied. The central cavity in turn contained a Kerr
nonlinearity, c.f. equation (3). The first study coined the setup
‘Quantum Optical Josephson Interferometer’ [90] and found
that the destructive interference in the central cavity due to
opposite phases of the driving fields is retained even for large
nonlinearity. As photons enter the central cavity via
tunnelling processes from the outer cavities, the transition
from coherent to anti-bunched photon statistics in this cavity
depends on the tunnelling rate. Similar behaviour was found
for a case where two waveguides with a continuous spectrum
replaced the two outer cavities. A later work explored the
setup in a superconducting circuit context [130], c.f. section 3,
and extended the study to higher excitation numbers where a
different dependence of the coherent to anti-bunching
transition on the tunnelling rate was found.

Due to the large dimension of their Hilbert spaces and the
eventually long time scales on which stationary states are
reached, modelling many-body systems of interacting
photons is a demanding challenge. In the next section we
thus review some existing powerful methods together with
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recent efforts to extend their application ranges and develop
new ones.

4.3. Calculation techniques

The modelling of quantum many-body systems is a formid-
able challenge since the dimension of their Hilbert space
grows exponentially in the number of constituents. This
scaling renders exact descriptions, including exact numerical
approaches infeasible, even for moderate system sizes. For
dissipative quantum many-body systems the computational
effort is even more dramatic as mixed quantum states need to
be considered. Exceptions to this intractability are quantum
systems that do not explore their entire Hilbert space, where
numerical optimisation approaches such as DMRG [232]
become efficient. For calculating equilibrium phase diagrams
DMRG has thus been used in a number of works considering
many-body systems of interacting photons [212, 213, 215]. In
turn for calculating dynamics, Matrix Product State repre-
sentations of DMRG [193] in form of the Time-Evolving
Block Decimation (TEBD) [250, 251, 263] have frequently
been applied [25, 95, 107, 110, 128, 198, 202, 225].

Alternatively to approximations with states of limited
entanglement, one may aim for only obtaining the informa-
tion of interest about the quantum state of the entire system
and try to find accurate and efficient approximations for the
sought quantities. Mean-field approaches [131] can be
understood as representatives of this strategy as they only
predict properties of a single constituent of the many-body
system [85, 220]. Such approaches, which calculate local
quantities but ignore all correlations between subsystems,
have been applied in both, the calculation of equilibrium
states [93] as well as dynamics [243] and stationary states of
driven-dissipative systems [153, 189]. In some cases, e.g.
some scenarios of strongly interacting Rydberg gases as
discussed in section 2.3, only states with low excitation
numbers contribute so that full numerics in a strongly trun-
cated Hilbert space provides a good approximation [171].

Yet, as DMRG approaches are limited to one-dimen-
sional systems and mean-field techniques are only expected to
become accurate in very high lattice dimensions, which often
do not correspond to the physical realisations, there is a need
for further efficient methods for accurately calculating sta-
tionary states of quantum many-body systems. As a con-
sequence a substantial amount of research has recently been
dedicated to the development of such methods.

Keldysh path integral methods have been used to explore
long-range properties [235, 240] and dynamical mean-field
theory has been generalised to nonequilibrium scenarios [7].
For solving Lindbald type master equations for their sta-
tionary states, del Valle et al have expanded the resulting
equations for correlators in powers of the inter-site coupling
[61]. Li et al have developed a perturbation theory for the
Lindbladian including a resummation technique for the per-
turbations [163, 164]. Degenfeld-Schonburg et al have gen-
eralised open quantum system techniques to take dynamical
environments into account so that they can describe the

interacting constituents of a many-body system in a consistent
Mori projector theory (c-MoP) [58, 59].

For directly finding the stationary states of a master
equation without doing a time integration, variational
approaches have been developed. These include a variational
expansion around product states [256] and variational Matrix
Product Operator approaches [55, 181]. Alternative approx-
imations that focus on a restricted part of the Hilbert space in
a similar way as Matrix Product State representations by
keeping only the dominant eigenvalues of reduced density
matrices but can be applied in two-dimensional lattices have
been introduced by Finazzi et al as a ‘corner-space renor-
malization method’ [83]. Moreover, a dynamical polaron
ansatz has been introduced for treating very strong light-
matter couplings [66, 151].

For experimental investigations of the predicted phase
diagrams and phenomena, a crucial question is whether their
experimental signatures are accessible in measurements. We
therefore discuss some of these signatures in the next section.

4.4. Experimental signatures

To clarify whether the phase diagrams and transitions dis-
cussed here can eventually be observed in experiments, it is
important to determine their signatures in measurable obser-
vables. In this context it is natural to consider the photons
emitted from the individual resonators. These output fluxes
are related to intra-resonator quantities via input-output rela-
tions [253]. In this way the number of polaritons in each
resonator, = á ñn p pl l l

† for site l, and the number fluctuations,

= á ñ - á ñF p p p p 32l l l l l
2 2( ) ( )† †

can be measured. These quantities provide information about
the localisation and delocalisation of the polaritons, e.g. in a
Mott insulator to superfluid transition.

The visibility of interference fringes of photons emitted
from the resonators [121, 212] moreover provides information
about coherences between resonators that may have built up
in condensation, thus signalling a superfluid phase, c.f. [29].
The visibility

 =
-
+

S S
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33
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of the interference pattern can be expressed in terms of the
polariton number distribution in momentum space,

å= á ñp

=
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j l
, 1
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where L is the number of sites in a one dimensional array. In
the superfluid regime,  approaches unity whereas it is very
small for a Mott insulator. Remarkably, equation (34) also
allows to bound the entanglement in a many-body system
from below without further assumptions [52, 53].

Moreover, coincidence counting measurements of the
photons emitted from one or multiple resonators [253] allow
to reconstruct g 2( )-functions of the polaritons in the resonator
for both, coincidences from one resonator leading to g j j,2 ( )( )

and coincidences from separate resonators leading to g j l,2 ( )( )
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with ¹j l. These quantities would reveal the density wave
ordering predicted for driven-dissipative Bose–Hubbard
models with phase off-set in the driving fields [107] or with
cross-Kerr interactions [128]. Higher order correlation-func-
tions [60] could then be measured to reveal further properties
of the investigated quantum many-body states.

In the next section we turn to review a recent develop-
ment that has been largely triggered by the ample possibilities
for engineering the band structure for photons in many
devices. This is the realisation of artificial gauge fields for the
quantum simulation of many-body systems under their
influence.

5. Artificial gauge fields

Charged particles moving in magnetic fields are an important
paradigm in quantum mechanics and give rise to intriguing
phenomena including the celebrated quantum Hall effect
[239, 260]. The increasing understanding of the geometric
foundations of the quantum Hall effect also led to the dis-
covery of topological insulators and topological super-
conductors which show exotic properties routed in the
topological structure of their electron bands [201].

The first approaches to exploring photons that are subject
to an artificial gauge field were put forward by Haldane and
Raghu [105, 205], who considered a hexagonal array of di-
electric rods leading to two dimensional photonic bands that
show an appreciable Faraday effect leading to a breaking of
time-reversal symmetry. The photonic bands can then be
characterised by their Chern number [241], which is a topo-
logical invariant. Moreover, when two ‘materials’ with dif-
ferent Chern numbers are joined, a chiral state emerges, that
propagates along the interface in one unique direction only.
These so called edge states are robust with respect to scat-
tering at impurities provided the associated interaction energy
is smaller than the gap to neighbouring bands. For photons
these properties allow to engineer one-way waveguides which
are free of backscattering.

For microwave photons, an approach to engineer a time
reversal symmetry breaking in networks of superconducting
circuits has been introduced by Koch et al [147], see also
[191]. In this scheme, a circulator element formed by a
superconducting ring intersected by three Josephson junctions
that is threaded by a flux bias couples three coplanar wave-
guide resonators.

The absence of backscattering at impurities for edge
modes has been considered by Hafezi et al [103] for engi-
neering robust optical delay lines. In their approach, toroidal
micro-cavities coupled by loops of tapered optical fibre with
different path length for different directions of propagation
are considered to emulate the effect of an artificial gauge field
similar to a perpendicular magnetic field for the photon
dynamics. An alternative approach to generating effective
gauge fields via a dynamical modulation of the photon tun-
nelling rate at difference between the oscillation frequencies
of the two adjacent resonators has been presented by Fang
et al [76]. The emerging gauge fields do in both concepts not

need to be spatially uniform and can thus be employed to
guide photon propagation and implement waveguides [168].

Experimentally, the absence of backscattering in chiral
edge modes of photons has first been investigated in the
microwave regime in photonic crystals of a square lattice
geometry [255]. Profiles of edge modes have then been
imaged in silicon photonics devices [101]. More recently,
topological invariants in such systems have been measured
via the shift of the spectrum as a response to a quantum of
flux inserted at the edge [185]. This technique allows to
access the winding number which is directly related to the
Chern number via the bulk-boundary correspondence. An
alternative approach to engineering an artificial gauge field
has been explored with a continuous drive on one site of a
Bose–Hubbard dimer [211]. For further details on the physics
of artificial gauge fields for propagating photons, we refer the
interested reader to the review by Hafezi [97].

Whereas experimental progress has so far been mostly
made with samples where photon-photon interactions via
optical nonlinearities can be neglected, theory research has
also addressed the intriguing regime where strong artificial
gauge fields and strong effective photon-photon interactions
coexist. Most notably this leads to regimes for fractional
quantum Hall physics. A first proposal for generating a
fractional quantum Hall regime in coupled photonic resona-
tors was put forward by Cho et al [49]. The approach con-
siders optical cavities doped with single atoms with a lambda
shaped level structure featuring two metastable states. By
driving two photon transitions with external lasers with
nonuniform relative phases, an artificial gauge field is engi-
neered in this strongly nonlinear system. This driving pattern
leads to a bosonic version of a fractional quantum Hall
regime, with even number of magnetic fluxes per excitation.

In circuit-QED systems in turn, three-body interactions in
the presence of artificial gauge fields have been explored,
which lead to Pfaffian states [98]. The artificial gauge field is
in circuit-QED architectures implemented via externally
modulated coupling SQUIDs as discussed in section 3.2.1.
The adjacent building blocks have different transition fre-
quencies and the coupling SQUID is driven by an external
flux which oscillates at a frequency that equals the difference
of the transition frequencies of its two neighbouring lattice
sites. Relative phases between the drives at several coupling
SQUIDs then encode an applied gauge field. If in turn, the
photon tunnelling is dynamically modulated at the sum of the
transition frequencies of the adjacent lattice sites, a Kitaev
spin chain showing Majorana zero modes can emerge [18].

The dynamical modulation of a coupling circuit for
engineering an artificial gauge field has recently been
demonstrated in an experiment by Roushan et al [217]. Here
three superconducting transmon qubits were coupled in a ring
via tunable couplers [47] that were modualted by oscillating
magnetic fluxes to simulate the effect of a perpendicular
gauge field. In this setup, that thus combines an artificial
gauge field with local interactions provided by the qubit
nonlinearities, single excitations and excitation pairs were
circulated aroud the ring in a controlled way.
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The emergence of fractional quantum Hall physics in
driven-dissipative lattices of coupled photonic resonators has
been investigated by Umucalilar et al [245] by showing that
the stationary states of such driven dissipative systems can,
when projected on a specific excitation number, approximate
Laughlin wave-functions with even number of magnetic
fluxes per excitation. The overlap of the stationary states of
such cavity lattices with a Laughlin state was analysed with
an efficient approximation for low excitation numbers in
[104]. The potential of engineered dissipation for stabilising
topological states by coupling the cavity lattice to two-level
systems with fast dissipation, has been explored by Kapit et al
[132]. Moreover a quantum simulator for topological order
with superconducting circuits has been proposed in [223].

The theory research on models with artificial gauge fields
has recently also been pushed further to explore the genera-
tion of non-Abelian [184] and dynamical gauge fields in
lattice gauge filed theories [178, 180]. For the latter, the gauge
fields are not set by an external current or voltage source by
formed by dynamical degrees of freedom of the network.

6. Summary and outlook

After optical nonlinearities at the single photon level, i.e.
effective interactions between individual photons, have been
realised in single micro-cavities, coupling several optical or
microwave resonators to form a network has become a new
research goal. In parallel avenues to generate effective inter-
actions between individual photons in extended one-dimen-
sional volumes have been considered. Whereas the initial
work in the research field was mostly of theoretical nature,
technological advances in recent years have now matured the
experimental platforms to such an extent that an increasing
number of experimental investigations are to be seen in the
coming years. This development has two exciting
perspectives.

From a scientific perspective, quantum many-body sys-
tems of interacting photons can be expected to exhibit a
wealth of new quantum many-body phenomena as they
naturally operate under driven, non-equilibrium conditions
which are different to the equilibrium scenarios usually
explored in quantum many-body physics. From a technology
perspective, photons are the most suitable carrier for trans-
mitting information over long distances as they are largely
immune to environmental perturbations. As optical non-
linearities in conventional media are weak it is therefore of
great importance to conceive means of making individual
photons interact with each other at multiple nodes of a net-
work to make them suitable for information processing.
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