16 research outputs found

    S-OGSA as a Reference Architecture for OntoGrid and for the Semantic Grid

    Get PDF
    The Grid aims to support secure, flexible and coordinated resource sharing through providing a middleware platform for advanced distributing computing. Consequently, the Grid’s infrastructural machinery aims to allow collections of any kind of resources—computing, storage, data sets, digital libraries, scientific instruments, people, etc—to easily form Virtual Organisations (VOs) that cross organisational boundaries in order to work together to solve a problem. A Grid depends on understanding the available resources, their capabilities, how to assemble them and how to best exploit them. Thus Grid middleware and the Grid applications they support thrive on the metadata that describes resources in all their forms, the VOs, the policies that drive then and so on, together with the knowledge to apply that metadata intelligently

    A Brief History of the Semantic Grid

    Get PDF
    The story of the Semantic Grid, from its originas in the UK eScience programme in 2001 through to the Dagstuhl event in 2005

    The Knowledge of the Grid: A Grid Ontology

    Get PDF
    This paper presents a knowledge architecture and set of ontologies that can be used as the foundation to facilitate the matching of abstract resource requests to services and resources, to determine the functional equivalence of Grid middle wares and deployments and to allow the description of ‘hybrid’ compound Grids composed of individual heterogeneous Grids. This is necessary as in all these cases what is required is mediation between different views or descriptions of Grids, which requires a formal reference vocabulary. We present a framework and ontologies for achieving this

    Towards a Semantic Grid Architecture

    Get PDF
    The Semantic Grid is an extension of the current Grid in which information and services are given well defined and explicitly represented meaning, better enabling computers and people to work in cooperation. In the last few years, several projects have embraced this vision and there are already successful pioneering applications that combine the strengths of the Grid and of semantic technologies. However, the Semantic Grid currently lacks a reference architecture, or a systematic approach for designing Semantic Grid components or applications. We need a Reference Semantic Grid Architecture that extends the Open Grid Services Architecture by explicitly defining the mechanisms that will allow for the explicit use of semantics and the associated knowledge to support a spectrum of service capabilities. An architecture would have (at least) three major components which are depicted in the extended abstract

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    Knowledge perspectives in data grids

    Get PDF
    In this paper a methodology for accesing scientific data repositories on data grids is proposed. This methodology is based on ontology specification and knowledge representation. The concept of Knowledge Perspective is introduced, as the action of applying particular scientific conjectures or theories to the interpretation of experimental data and information. Data grid environments provide high levels of security and virtualization, which allow the users to create new data services on the data server side. These new services are based on the user’s knowledge perspective. An implementation of this concept is presented, on a Globus-enabled Java execution platform.IFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data MiningRed de Universidades con Carreras en Informática (RedUNCI

    SIMDAT

    No full text

    An overview of S-OGSA: A Reference Semantic Grid Architecture

    Get PDF
    The Grid's vision, of sharing diverse resources in a flexible, coordinated and secure manner through dynamic formation and disbanding of virtual communities, strongly depends on metadata. Currently, Grid metadata is generated and used in an ad hoc fashion, much of it buried in the Grid middleware's code libraries and database schemas. This ad hoc expression and use of metadata causes chronic dependency on human intervention during the operation of Grid machinery, leading to systems which are brittle when faced with frequent syntactic changes in resource coordination and sharing protocols. The Semantic Grid is an extension of the Grid in which rich resource metadata is exposed and handled explicitly, and shared and managed via Grid protocols. The layering of an explicit semantic infrastructure over the Grid Infrastructure potentially leads to increased interoperability and greater flexibility. In recent years, several projects have embraced the Semantic Grid vision. However, the Semantic Grid lacks a Reference Architecture or any kind of systematic framework for designing Semantic Grid components or applications. The Open Grid Service Architecture ( OGSA) aims to define a core set of capabilities and behaviours for Grid systems. We propose a Reference Architecture that extends OGSA to support the explicit handling of semantics, and defines the associated knowledge services to support a spectrum of service capabilities. Guided by a set of design principles, Semantic-OGSA ( S-OGSA) defines a model, the capabilities and the mechanisms for the Semantic Grid. We conclude by highlighting the commonalities and differences that the proposed architecture has with respect to other Grid frameworks. (c) 2006 Elsevier B. V. All rights reserved
    corecore