
The Knowledge of the Grid: A Grid Ontology

Michael Parkin1, Sven van den Burghe2,

Oscar Corcho1, Dave Snelling2, John Brooke1

1 School of Computer Science and Manchester Computing,
The University of Manchester, M13 9PL, United Kingdom.

2 Distributed Services Research Group,
Fujitsu Laboratories of Europe Ltd., Middlesex, UB4 8FE, United Kingdom.

Abstract

This paper presents a knowledge architecture and set of ontologies that
can be used as the foundation to facilitate the matching of abstract
resource requests to services and resources, to determine the functional
equivalence of Grid middlewares and deployments and to allow the
description of ‘hybrid’ compound Grids composed of individual hetero-
geneous Grids. This is necessary as in all these cases what is required
is mediation between different views or descriptions of Grids, which
requires a formal reference vocabulary. We present a framework and
ontologies for achieving this.

1 Introduction

The Grid computing vision is to enable coordinated resource sharing through
the creation of application-independent middleware and protocols. In Japan and
Europe there are, mainly, two Grid systems deployed: Globus [1], predominantly
deployed in cluster based computing projects, and Unicore [2], typically used to
allow access to heterogeneous high performance computing (HPC) architectures.

The initial impetus for the development of a Grid Resource Ontology was
the need to develop a resource broker that could use either the MDS structure
adopted by Globus or the information in Unicore’s Incarnation DataBase (IDB).
On closer examination the critical translations that needed to be established
were between the Grid Uniform Laboratory Environment [3] used to provide a
uniform resource description for Grid projects based on Globus and the syntax
used by Unicore for the entries in the IDB [4]. The solution to this problem was
ultimately to develop along with other projects standard languages for common
Grid patterns of actions such as job submission [5].

However in the course of this work a deeper issue arose, namely how we as-
sert that two different Grid systems are providing the same functionality. This
led us to examine not just the syntax but also the semantics of both Globus
and Unicore. In the terms developed by the proposers of the Semantic Grid
we were examining knowledge of the Grid in contrast to the majority of work
on Semantic Web, which is directed towards knowledge in documents and ser-
vices on the Web or Grid [6]. We aim to capture the semantics implicit in the
architectural assumptions of differing Grid systems and to formalize them in a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148655932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


standard ontological language. We believe that if sufficient community consen-
sus can be captured in such a formalism, it will be possible to develop reasoning
tools which can be used to check if a pattern of actions can be performed on
any given Grid system. We can thus check if interoperability is possible rather
than just assuming it to be desirable and then finding for each interoperability
venture ad-hoc methods of working across Grids.

We believe that this task is an urgent one for the Grid community, since
there now exist several other middleware systems aiming to capture entire Grid
functionality (gLite, OMII-UK, CROWN, NAREGI, NordicGrid, DGrid). Thus
pair-wise translation of corresponding terms leads to a combinatorial explosion.
We also claim that careful modeling and formalization of Grid architectures
provides important guidance for the development of Grid and Web Service stan-
dards. Since such modeling involves community consensus we describe also how
we intend to enable community participation in the further development of the
modular ontology we have developed as a starting point.

2 Methodology for Modeling

2.1 Requester-Provider Duality

This work is motivated by considering how a Grid operates, since observation
of Grids indicates there are two parties interacting when an piece of work is
requested from/on the Grid; the ‘client’ application that forms, describes and
requests the work and the resource providers that are willing to share their
resources and accept and execute these pieces of work1. This is a fundamental,
abstract duality that underlies the idea of coordinated resource sharing that
allows us to capture many of the complex interactions in a Grid ecosystem.

However, an impediment to these two parties interoperating is the fact that
they may not, and need not, see the Grid in the same way. For example a scien-
tist’s meteorological simulation may specify the resolution of the computational
mesh, the time for which the simulation is to be run, and the different physics
routines to be used. This has implications for resource consumption but is not
directly expressible in CPU numbers and speed and memory size, which is how
grid nodes are described. Furthermore a client and resource provider may use
different languages to describe ‘their’ interpretation of a Grid request.

There exists, therefore, a requirement for mediating or reconciling these two
views of the Grid by producing a common vocabulary that defines, relates and
allows us to share interpretations of the Grid. Thus, to enable this mediation
we can build ontologies, defined as “formal, explicit specifications of a shared
conceptualization” [7], to allow the formal definition of terms and relationships
that will be used by Grid middleware and applications in order that the metadata
that we generate is explicitly described and represented and can be shared more
easily among different implementations and deployments.

1This does not preclude other third parties, e.g. resource brokers, since the requester-
provider model works recursively. For example, a broker is a provider to a client and a requester
to Grid resource management systems.



2.2 Grid Ontology Requirements

Thus, our ontology must fulfill two requirements in order to satisfy the
client/resource provider view of the Grid we have presented: firstly, it must al-
low us to express resource requirements in an abstract, resource and middleware
independent form. Secondly, the ontology must express, again in an abstract
manner, both the actions requested and the resources that enable these actions.
In this paper we refer to the process of translating between these two forms
as incarnation, a term that was originally used by Unicore, literally meaning
“the act of causing to exist”2. For example, an abstract directory representation
in Unicore (a Java object) is incarnated by the Network Job Supervisor into a
concrete directory on the resource itself. The abstract notion of the directory is
generated by the need to perform the action of creating a container for files, the
concrete representation as a directory pathname is the concrete realization on a
given system.

Having an ontology that fulfills these requirements allows us to perform many
tasks. We can use the ontology to:

• Group actions and the dependencies between then in an abstract form that
can be translated into differing workflow languages.

• Tie an abstract resource to an abstract action that can be translated into
a JSDL or native Resource Manager syntax job request.

• Create interoperable Grids by demonstrating that patterns of actions or re-
sources described in different middleware syntax are equivalent, this avoids
the need for pair-wise mapping of middleware-specific terms.

3 Relationship to Other Work

Creating a common, structured set of terms and vocabularies to Grid de-
scribe applications and middleware is not new. The GLUE schema, Unicore Ab-
stract Job Objects (AJOs), the Common Information Model [8] and the OGSA
Glossary [9] are good examples of existing vocabularies. However, these ex-
amples lack some of the characteristics of ontologies we have described above.
They either: lack formality in their definitions, which makes their usability and
reusability more difficult; do not express a shared point of view of Grid applica-
tions and middleware; are not explicit; or they do not cover all the concepts and
components a Grid may have. A brief description of these efforts is now given.

• GLUE Schema. The Grid Laboratory Uniform Environment (GLUE)
Schema was developed to provide “an abstract model . . . for Grid resources
and mapping to concrete schemas that can be used in Grid Information
Services” [3]. GLUE was developed for use with the Globus Toolkit’s Mon-
itoring and Discovery Service (MDS) so that Globus users could determine
what resources were and what they did according to the reference schema.
Thus, the GLUE Schema fulfills one half of the requirements described in
Section 2.2 – that of describing the capabilities of the resource provider.

2The Oxford English Dictionary.



It does not, however, fulfill the second half of our identified requirements,
i.e. describing abstract requests for resources.

• Unicore AJOs. The Unicore AJOs are a set of open-source Java classes
that provide an abstract language with implicit semantics to describe a
piece of work to be performed on a computational resource. A job can
contain a single AJO or groups of AJOs that may have dependencies on
each other; i.e. AJOs can be grouped into directed acyclic graphs describ-
ing complex interdependent computational Grid tasks, or workflows. AJOs
provide an elegant model to describe abstract resource requests. However,
the semantics of the AJOs are not explicit, they do not describe the capa-
bilities of the Grid resources, nor do they describe aspects of a Grid such
as it’s security model, infrastructure and processes, etc.

• The DMTF Common Information Model (CIM). CIM, a standard
and schema defined by the Distributed Management Task Force (DTMF),
provides a comprehensive, formal model of “management information sys-
tems, networks, applications and services” [8] and the relationships be-
tween them. However, it does not capture certain aspects of the Grid such
as the description of abstract jobs and processes such as incarnation.

• The OGSA Glossary. The OGSA Glossary has been produced by the
Global Grid Forum (GGF) to “provide information to the Grid community
regarding the concepts and terms used by the Open Grid Services Archi-
tecture” [9]. However, as comprehensive and accurate as the glossary is, it
is not suitable as a basis for an ontology of the Grid as it lacks formality,
i.e. the descriptions are in natural language and have no structure.

• Unique Ontologies Developed for Specific Applications. Recently,
ontologies have developed for Grid middleware for the purposes of exposing
metadata of Grid services and resources. This has been done for several
purposes, including service and resource discovery [10], enabling data in-
tegration [11, 12] and controlling authorization to resources [13]. All these
developments embrace the vision of the Semantic Grid – an extension of
the Grid where rich resource metadata is exposed, then shared. The layer-
ing of an explicit semantic infrastructure over Grid infrastructure has the
potential to increase interoperability and provide greater flexibility when
composing services. In the context of the applications that have been pre-
viously developed, different ontologies were produced with many of them
the including the same terms but redefined in different ways due to the
lack of a ‘reference’ ontology to describe them. Thus, it is the aim of this
work to produce that reference ontology to ‘ground’ Grid concepts.

4 An Ontology of the Grid

4.1 Knowledge Architecture

The structure, or knowledge architecture, of the modular ontologies is shown
in Figure 1, where ‘import’ denotes that an ontology imports the concepts from
another ontology. Thus, the Foundational Ontology defines the high-level, com-



mon, general-purpose Grid concepts that can be re-used in the description of
any Grid middleware or application, protocols, services, resources and Virtual
Organizations. This ontology is described in detail in Section 4.2. Within the
Base Concepts layer we have separated out ontologies containing OGSA [14]
and S-OGSA [15] concepts because although OGSA and S-OGSA are middle-
ware independent architectures for Grids, not all middleware is based on these
architectures. Thus, the Foundational Ontology contains agreed concepts that
are present in all Grid middleware (including some OGSA concepts) whilst the
OGSA and S-OGSA ontologies contain terms that are only relevant to them.

Fig. 1: The Grid Knowledge Architecture

The second tier of ontologies in our hierarchy provides domain-independent
but middleware-specific ontologies that describe instances of implementations of
Grid middleware. As examples, Figure 1 shows how Globus Toolkit 2, Globus
Toolkit 4, Unicore and UniGridS [18] middleware fits into this hierarchy, though
we could have also included middleware such as Condor, for example. As we
have described, the ontologies in this layer import and extend the Base Con-
cepts; UniGrids and Globus Toolkit 4 both import the OGSA ontology since
these implementations are based on OGSA. Note that ontologies can also have
dependencies between each other; the UniGrids ontology imports concepts from
Unicore as it has concepts based on that middleware. The final layer in our on-
tology hierarchy contains instances of actual Grid deployments and is described



in Section 4.4.

4.2 Foundational Ontology

The Foundational Ontology contains 104 classes and 154 object properties.
Due to reasons of space it is not possible to list and describe them here, therefore
a selection of classes (denoted by typewriter font) and their properties have
been chosen to illustrate important concepts.

4.2.1 User & Security Concepts

Concepts relating to the use of a Grid are tightly-coupled with security con-
cepts, therefore a selection of user and security concepts are presented together.

• A User3 (who may have zero or more Identities) interacts with the Grid.
• An Identity is an attribute that “allows entities to be distinguished from

all others” [16] and is incarnated to a physical Xlogin on a system.
• An Identity is established by at least one Credential.
• A Credential, issued by a Credential Issuer, establishes an Identity

by being authenticated by an Authentication Point.
• An authenticated Credential is authorized to perform a task on a Grid

by an Authorisation Point.

4.2.2 Action & Activity Concepts

Fundamental to the Grid is the ability to describe pieces of work in an manner
not specific to a Grid implementation, thus allowing portability of jobs and the
evaluation and execution of jobs based on their explicit semantics. This section
describes some of these concepts and their properties.

• Each Action, the superclass of all the types of abstract actions supported,
has a Action State and, eventually, an Outcome.

• An ActionGroup is a type of Action which can contain zero, one or more
Actions that may have Dependencies on other Actions. As it is a sub-
class of Action it has both an Action State and Outcome.

• A Task, a type of Action, is “a definable unit of work” [14].
A piece of work for the Grid expressed in these abstract terms it is then

incarnated at an Incarnation Point to an Activity, which is runnable on a
Resource Collection. A running Activity is a Job, which has a Job State
and may have an Input and Job Working Space.

4.3 Domain-Independent Ontologies

The domain-independent ontologies describe middleware-specific concepts.
Examples from the Unicore and Globus Toolkit 2 middlewares are shown here.

• A Globus GateKeeper is a type of Access Point that supports the Globus
GSI (Grid Security Infrastructure) protocol.

3Note a User is not the same as a Client, a piece of software that interacts with the Grid.



• Globus MDS is an Information Service that supports Globus’s GRRP and
GRIP (Grid Resource Registration/Inquiry Protocols).

• A Unicore Gateway is an Access Point to a Unicore USite (a type of
Administrative Domain) that supports the UPL (Unicore Protocol Layer).

4.3.1 Inferred Types & Semantic Equivalence of Concepts

Examples of how, using the properties of a concept, we can deduce or in-
fer what other types of concept it is and show the semantic equivalence of
middleware-specific concepts are now given. In the Foundational Ontology we
have defined that a Service is anything that supports a Protocol. Thus, as the
Unicore Gateway supports the UPL (a type of Protocol) reasoning over the on-
tology tells us that a Unicore Gateway is also a Service. Further, the Unicore
Gateway can also be deduced as an Authentication Point as it also authenti-
cates X.509 Certificates (a type of Credential). Globus Gatekeepers also
authenticate Credentials, therefore they too are Authentication Points and
the Unicore Gateway and Globus Gatekeeper can be said to be semantically
equivalent. Thus we can use outcomes of reasoning over the ontology to map
terms between heterogeneous Grids and promote interoperability between them.

4.4 Instance-Level Ontologies

The final layer in the Grid knowledge architecture presented in this paper is
intended to contain concrete instances of Grids and hold details of Grid systems
and deployments described using the Grid ontology. The UK’s National Grid
Service, US TeraGrid and Earth Science Grids, NorduGrid, etc. are all examples
of production Grids that would be included in this layer of the hierarchy.

5 Conclusions & Future Work

This work has briefly presented a knowledge architecture and reference on-
tologies for Grid computing that not only capture concepts such as a Grid’s
infrastructure but also how it is used by Grid consumers (through abstract de-
scriptions of Grid actions) together with common Grid processes. By taking this
novel perspective of the Grid we have provided the foundations for describing
Grid resource/service usage and interoperability based on the semantic descrip-
tions of Grids and Grid users’ abstract actions that can be incarnated into the
representation appropriate for that Grid.

Our future work will concentrate on promoting the uptake and use of these
ontologies within EU IST projects such as OntoGrid. Barcelona Supercomputing
Center are using the ontology with their GRID Superscalar programming frame-
work to develop a prototype system to provide advanced scheduling techniques
based on the semantic properties of client job submitted to resource providers.

The Foundational, OGSA, S-OGSA, Globus and Unicore ontologies we have
introduced in the paper are available from http://www.unigrids.org/ontology.
html for public inspection, use and comment.



6 Acknowledgments

Michael Parkin’s work was supported under the RealityGrid DTA programme
funded by EPSRC. Oscar Corcho’s work is supported by the EU FP6 On-
toGrid project (STREP 511513) funded under the Grid-based Systems for solv-
ing complex problems, and by the Marie Curie fellowship RSSGRID (FP6-2002-
Mobility-5-006668). John Brooke, Dave Snelling and Sven van der Berge’s work
was supported by the EU FP6 UniGrids project (STREP 004279).

References

1. Globus: A Metacomputing Infrastructure Toolkit. I. Foster, C. Kesselman. Inter-
national J. Supercomputer Applications, 11(2): pp. 115-128. Summer 1997.

2. UNICORE: A Grid Computing Environment. D. Erwin, D. Snelling. Proceedings
of 7th International Euro-Par Conference: pp. 825-834. Aug. 2001.

3. The GLUE Schema, Version 1.2. S. Andreozzi et al. Dec. 2005.
4. Semantic matching of Grid resource in Grid Computing. J.M. Brooke, D. Fellows,

K. Garwood and C. Goble. Second European AcrossGrids Conference. Revised
Papers Editors: Marios D. Dikaiakos, LNCS 3165, pp. 240-249. Jan. 2004.

5. Job Submission Description Language (JSDL) Specification, Version 1.0. A. An-
jomshoaa et al. GGF Document GFD-R.056. Nov. 2005.

6. Enhancing Services and Applications with Knowledge and Semantics. C. Goble,
et al. Ch. 23 in The Grid 2: Blueprint for a New Computing Infrastructure. 2004.

7. Knowledge Engineering: Principles and Methods. R. Studer, V. R. Benjamins,
D. Fensel. IEEE Transactions on Data and Knowledge Engineering 25(1): pp. 161-
197. March 1998.

8. DMTF Common Information Model (CIM), Version 2.1.3. Sept. 2006.
9. Open Grid Services Architecture Glossary of Terms. J. Treadwell (ed.). GGF

Document GFD-I.044. Jan. 2005.
10. A Suite of DAML+OIL Ontologies to Describe Bioinformatics Web Services and

Data. C. Wroe et al. International Journal of Cooperative Information Systems
12(2): pp. 197-224. March 2003.

11. The Earth System Grid Ontology. http://marinemetadata.org/vocabularies/
refs/mapping/document.2005-05-27.6566880301/ Nov. 2006.

12. An Ontology-Driven Framework for Data Transformation in Scientific Workflows.
S. Bowers, B. Ludaescher. International Workshop on Data Integration in the Life
Sciences: pp. 1-16. March 2004.

13. An Authorisation Scenario for S-OGSA. P. Alper et al. Proceedings of Posters
and Demos, 3rd European Semantic Web Conference: pp. 7-8. June 2006.

14. The Physiology of the Grid: an Open Grid Services Architecture for Distributed
Systems Integration. I. Foster, et al. OGSI Working Group, GGF. June 2002.

15. An Overview of S-OGSA: A Reference Semantic Grid Architecture. O. Corcho et
al. Journal of Web Semantics 4(2): pp. 102-115. June 2006.

16. RFC 2828 - Internet Security Glossary. R. Shirey. Network Working Group, The
Internet Society. May 2000.

17. eXtensible Access Control Markup Language (XACML) Version 2. OASIS Stan-
dard. T. Moses (ed). Feb. 2005.

18. UNiform Interface to GRID Services. http://www.unigrids.org


