3,192 research outputs found

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Quality-of-Information Aware Sensing Node Characterisation for Optimised Energy Consumption in Visual Sensor Networks

    Get PDF
    Energy consumption is one of the primary concerns in a resource constrained visual sensor network (VSN) with wireless transceiving capability. The existing VSN design solutions under particular resource constrained scenarios are application-specific, whereas the degree of sensitivity of the resource constraints varies from one application to another. This limits the implementation of the existing energy efficient solutions within a VSN node, which may be considered to be a part of a heterogeneous network. This thesis aims to resolve the energy consumption issues faced within VSNs because of their resource constrained nature by proposing energy efficient solutions for sensing nodes characterisation. The heterogeneity of image capture and processing within a VSN can be adaptively reflected with a dynamic field-of-view (FoV) realisation. This is expected to allow the implementation of a generalised energy efficient solution that will adapt with the heterogeneity of the network. In this thesis, a FoV characterisation framework is proposed, which can assist design engineers during the pre-deployment phase in developing energy efficient VSNs. The proposed FoV characterisation framework provides efficient solutions for: 1) selecting suitable sensing range; 2) maximising spatial coverage; 3) minimising the number of required nodes; and 4) adaptive task classification. The task classification scheme proposed in this thesis exploits heterogeneity of the network and leads to an optimal distribution of tasks between visual sensing nodes. Soft decision criteria is exploited, and it is observed that for a given detection reliability, the proposed FoV characterisation framework provides energy efficient solutions which can be implemented within heterogeneous networks. In the post-deployment phase, the energy efficiency of a VSN for a given level of reliability can be enhanced by reconfiguring its nodes dynamically to achieve optimal configurations. Considering the dynamic realisation of quality-of-information (QoI), a strategy is devised for selecting suitable configurations of visual sensing nodes to reduce redundant visual content prior to transmission without sacrificing the expected information retrieval reliability. By incorporating QoI awareness using peak signal-to-noise ratio-based representative metric, the distributed nature of the proposed self-reconfiguration scheme accelerates the decision making process. This thesis also proposes a unified framework for node classification and dynamic self-reconfiguration in VSNs. For a given application, the unified framework provides a feasible solution to classify and reconfigure visual sensing nodes based on their FoV by exploiting the heterogeneity of targeted QoI within the sensing region. From the results, it is observed that for the second degree of heterogeneity in targeted QoI, the unified framework outperforms its existing counterparts and results in up to 72% energy savings with as low as 94% reliability. Within the context of resource constrained VSNs, the substantial energy savings achieved by the proposed unified framework can lead to network lifetime enhancement. Moreover, the reliability analysis demonstrates suitability of the unified framework for applications that need a desired level of QoI

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Quality assessment technique for ubiquitous software and middleware

    Get PDF
    The new paradigm of computing or information systems is ubiquitous computing systems. The technology-oriented issues of ubiquitous computing systems have made researchers pay much attention to the feasibility study of the technologies rather than building quality assurance indices or guidelines. In this context, measuring quality is the key to developing high-quality ubiquitous computing products. For this reason, various quality models have been defined, adopted and enhanced over the years, for example, the need for one recognised standard quality model (ISO/IEC 9126) is the result of a consensus for a software quality model on three levels: characteristics, sub-characteristics, and metrics. However, it is very much unlikely that this scheme will be directly applicable to ubiquitous computing environments which are considerably different to conventional software, trailing a big concern which is being given to reformulate existing methods, and especially to elaborate new assessment techniques for ubiquitous computing environments. This paper selects appropriate quality characteristics for the ubiquitous computing environment, which can be used as the quality target for both ubiquitous computing product evaluation processes ad development processes. Further, each of the quality characteristics has been expanded with evaluation questions and metrics, in some cases with measures. In addition, this quality model has been applied to the industrial setting of the ubiquitous computing environment. These have revealed that while the approach was sound, there are some parts to be more developed in the future
    • …
    corecore