4,145 research outputs found

    Enhancing health risk prediction with deep learning on big data and revised fusion node paradigm

    Get PDF
    With recent advances in health systems, the amount of health data is expanding rapidly in various formats. This data originates from many new sources including digital records, mobile devices, and wearable health devices. Big health data offers more opportunities for health data analysis and enhancement of health services via innovative approaches. The objective of this research is to develop a framework to enhance health prediction with the revised fusion node and deep learning paradigms. Fusion node is an information fusion model for constructing prediction systems. Deep learning involves the complex application of machine-learning algorithms, such as Bayesian fusions and neural network, for data extraction and logical inference. Deep learning, combined with information fusion paradigms, can be utilized to provide more comprehensive and reliable predictions from big health data. Based on the proposed framework, an experimental system is developed as an illustration for the framework implementatio

    An Effective Disease Prediction System using CRF based Butterfly Optimization, Fuzzy Decision Tree and DBN

    Get PDF
    Diabetes is a seriously deadly disease today. It is necessary to enable patients to control their blood glucose levels. Even though, in the past, various researchers proposed numerous diabetic detection and prediction systems they are not fulfilling the requirements in terms of detection and prediction accuracy. Nowadays, diabetes patients are utilizing the gadgets like Wireless Insulin Pump that passes into the body instead of syringes for filling insulin. Within this context, insulin treatment is necessary for avoiding life-threatening. Toward this mission, a new deep learning approach-based disease detection system is introduced which takes care of identifying Type-1 and Type-2 diabetes, heart diseases, and breast cancer. In this system, a new Conditional Random Field based Butterfly Optimization Algorithm (CRF-BOA) is developedto select the important features for identifying the Type-1 and Type-2 diabetic disease. Besides, a new fuzzy ID3 classification method is developed for classifying the patient's datasets either normal or abnormal and disease affected. Ultimately, by applying the deep belief network (DBN) the classified patient records are involved with training to identify the relevant symptoms of similarity and glucose status of various patient records. These experiments are being conducted for proving the efficiency of the proposed deep learning approach in terms of glucose monitoring efficiency and disease prediction accuracy.The proposed approach achieved high detection accuracy than the current deep learning approaches in this directionbased on error rate and accuracy

    Adaptation of Federated Explainable Artificial Intelligence for Efficient and Secure E-Healthcare Systems

    Get PDF
    Explainable Artificial Intelligence (XAI) has an advanced feature to enhance the decision-making feature and improve the rule-based technique by using more advanced Machine Learning (ML) and Deep Learning (DL) based algorithms. In this paper, we chose e-healthcare systems for efficient decision-making and data classification, especially in data security, data handling, diagnostics, laboratories, and decision-making. Federated Machine Learning (FML) is a new and advanced technology that helps to maintain privacy for Personal Health Records (PHR) and handle a large amount of medical data effectively. In this context, XAI, along with FML, increases efficiency and improves the security of e-healthcare systems. The experiments show efficient system performance by implementing a federated averaging algorithm on an open-source Federated Learning (FL) platform. The experimental evaluation demonstrates the accuracy rate by taking epochs size 5, batch size 16, and the number of clients 5, which shows a higher accuracy rate (19, 104). We conclude the paper by discussing the existing gaps and future work in an e-healthcare system

    Toward enhancement of deep learning techniques using fuzzy logic: a survey

    Get PDF
    Deep learning has emerged recently as a type of artificial intelligence (AI) and machine learning (ML), it usually imitates the human way in gaining a particular knowledge type. Deep learning is considered an essential data science element, which comprises predictive modeling and statistics. Deep learning makes the processes of collecting, interpreting, and analyzing big data easier and faster. Deep neural networks are kind of ML models, where the non-linear processing units are layered for the purpose of extracting particular features from the inputs. Actually, the training process of similar networks is very expensive and it also depends on the used optimization method, hence optimal results may not be provided. The techniques of deep learning are also vulnerable to data noise. For these reasons, fuzzy systems are used to improve the performance of deep learning algorithms, especially in combination with neural networks. Fuzzy systems are used to improve the representation accuracy of deep learning models. This survey paper reviews some of the deep learning based fuzzy logic models and techniques that were presented and proposed in the previous studies, where fuzzy logic is used to improve deep learning performance. The approaches are divided into two categories based on how both of the samples are combined. Furthermore, the models' practicality in the actual world is revealed

    A Smart System for Future Generation based on the Internet of Things Employing Machine Learning, Deep Learning, and Artificial Intelligence : Comprehensive Survey

    Get PDF
    The Internet of Things (IoT) is a networked system including interconnected things, devices, and networks that utilize the internet for communication and data exchange. The entity engages in interactions with both its internal and external surroundings. The IoT is capable of seeing the surrounding environment and responding in a way that is appropriate and adaptive. The utilization of advanced technology in this context enhances the environment and thus enhances the overall well-being of humanity. The IoT facilitates inter-device communication, whether through physical or virtual means. The IoT facilitates the enhancement of environmental intelligence, enabling seamless connectivity across many devices at any given moment. The concepts centred on the IoT, such as augmented reality, high-resolution video streaming, autonomous vehicles, intelligent environments, and electronic healthcare, have become pervasive in contemporary society. These applications have requirements for faster data rates, larger bandwidths, enhanced capacities, decreased latencies, and increased throughputs. IoT and Machine learning (ML) are among the fields of research that have shown significant potential for advancement. ML and IoT are used to build intelligent systems. Those networks will modify the ways in which worldwide entities exchange information. This article gives a comprehensive survey of the upcoming 5G-IoT situation, as well as a study of IoT smart system applications and usages. In addition to covering the latest developments in ML and deep learning (DL) and their impact on 5G-IoT, this article describes a comprehensive study of these important enabling technologies and the developing use cases of 5G-IoT

    Multilayer Cyberattacks Identification and Classification Using Machine Learning in Internet of Blockchain (IoBC)-Based Energy Networks

    Get PDF
    The world's need for energy is rising due to factors like population growth, economic expansion, and technological breakthroughs. However, there are major consequences when gas and coal are burnt to meet this surge in energy needs. Although these fossil fuels are still essential for meeting energy demands, their combustion releases a large amount of carbon dioxide and other pollutants into the atmosphere. This significantly jeopardizes community health in addition to exacerbating climate change, thus it is essential need to move swiftly to incorporate renewable energy sources by employing advanced information and communication technologies. However, this change brings up several security issues emphasizing the need for innovative cyber threats detection and prevention solutions. Consequently, this study presents bigdata sets obtained from the solar and wind powered distributed energy systems through the blockchain-based energy networks in the smart grid (SG). A hybrid machine learning (HML) model that combines both the Deep Learning (DL) and Long-Short-Term-Memory (LSTM) models characteristics is developed and applied to identify the unique patterns of Denial of Service (DoS) and Distributed Denial of Service (DDoS) cyberattacks in the power generation, transmission, and distribution processes. The presented big datasets are essential and significantly helps in identifying and classifying cyberattacks, leading to predicting the accurate energy systems behavior in the SG.© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)fi=vertaisarvioitu|en=peerReviewed

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    Performance Evaluation of Smart Decision Support Systems on Healthcare

    Get PDF
    Medical activity requires responsibility not only from clinical knowledge and skill but also on the management of an enormous amount of information related to patient care. It is through proper treatment of information that experts can consistently build a healthy wellness policy. The primary objective for the development of decision support systems (DSSs) is to provide information to specialists when and where they are needed. These systems provide information, models, and data manipulation tools to help experts make better decisions in a variety of situations. Most of the challenges that smart DSSs face come from the great difficulty of dealing with large volumes of information, which is continuously generated by the most diverse types of devices and equipment, requiring high computational resources. This situation makes this type of system susceptible to not recovering information quickly for the decision making. As a result of this adversity, the information quality and the provision of an infrastructure capable of promoting the integration and articulation among different health information systems (HIS) become promising research topics in the field of electronic health (e-health) and that, for this same reason, are addressed in this research. The work described in this thesis is motivated by the need to propose novel approaches to deal with problems inherent to the acquisition, cleaning, integration, and aggregation of data obtained from different sources in e-health environments, as well as their analysis. To ensure the success of data integration and analysis in e-health environments, it is essential that machine-learning (ML) algorithms ensure system reliability. However, in this type of environment, it is not possible to guarantee a reliable scenario. This scenario makes intelligent SAD susceptible to predictive failures, which severely compromise overall system performance. On the other hand, systems can have their performance compromised due to the overload of information they can support. To solve some of these problems, this thesis presents several proposals and studies on the impact of ML algorithms in the monitoring and management of hypertensive disorders related to pregnancy of risk. The primary goals of the proposals presented in this thesis are to improve the overall performance of health information systems. In particular, ML-based methods are exploited to improve the prediction accuracy and optimize the use of monitoring device resources. It was demonstrated that the use of this type of strategy and methodology contributes to a significant increase in the performance of smart DSSs, not only concerning precision but also in the computational cost reduction used in the classification process. The observed results seek to contribute to the advance of state of the art in methods and strategies based on AI that aim to surpass some challenges that emerge from the integration and performance of the smart DSSs. With the use of algorithms based on AI, it is possible to quickly and automatically analyze a larger volume of complex data and focus on more accurate results, providing high-value predictions for a better decision making in real time and without human intervention.A atividade médica requer responsabilidade não apenas com base no conhecimento e na habilidade clínica, mas também na gestão de uma enorme quantidade de informações relacionadas ao atendimento ao paciente. É através do tratamento adequado das informações que os especialistas podem consistentemente construir uma política saudável de bem-estar. O principal objetivo para o desenvolvimento de sistemas de apoio à decisão (SAD) é fornecer informações aos especialistas onde e quando são necessárias. Esses sistemas fornecem informações, modelos e ferramentas de manipulação de dados para ajudar os especialistas a tomar melhores decisões em diversas situações. A maioria dos desafios que os SAD inteligentes enfrentam advêm da grande dificuldade de lidar com grandes volumes de dados, que é gerada constantemente pelos mais diversos tipos de dispositivos e equipamentos, exigindo elevados recursos computacionais. Essa situação torna este tipo de sistemas suscetível a não recuperar a informação rapidamente para a tomada de decisão. Como resultado dessa adversidade, a qualidade da informação e a provisão de uma infraestrutura capaz de promover a integração e a articulação entre diferentes sistemas de informação em saúde (SIS) tornam-se promissores tópicos de pesquisa no campo da saúde eletrônica (e-saúde) e que, por essa mesma razão, são abordadas nesta investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à aquisição, limpeza, integração e agregação de dados obtidos de diferentes fontes em ambientes de e-saúde, bem como sua análise. Para garantir o sucesso da integração e análise de dados em ambientes e-saúde é importante que os algoritmos baseados em aprendizagem de máquina (AM) garantam a confiabilidade do sistema. No entanto, neste tipo de ambiente, não é possível garantir um cenário totalmente confiável. Esse cenário torna os SAD inteligentes suscetíveis à presença de falhas de predição que comprometem seriamente o desempenho geral do sistema. Por outro lado, os sistemas podem ter seu desempenho comprometido devido à sobrecarga de informações que podem suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de algoritmos de AM na monitoria e gestão de transtornos hipertensivos relacionados com a gravidez (gestação) de risco. O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global de sistemas de informação em saúde. Em particular, os métodos baseados em AM são explorados para melhorar a precisão da predição e otimizar o uso dos recursos dos dispositivos de monitorização. Ficou demonstrado que o uso deste tipo de estratégia e metodologia contribui para um aumento significativo do desempenho dos SAD inteligentes, não só em termos de precisão, mas também na diminuição do custo computacional utilizado no processo de classificação. Os resultados observados buscam contribuir para o avanço do estado da arte em métodos e estratégias baseadas em inteligência artificial que visam ultrapassar alguns desafios que advêm da integração e desempenho dos SAD inteligentes. Como o uso de algoritmos baseados em inteligência artificial é possível analisar de forma rápida e automática um volume maior de dados complexos e focar em resultados mais precisos, fornecendo previsões de alto valor para uma melhor tomada de decisão em tempo real e sem intervenção humana

    Edge-Based Health Care Monitoring System: Ensemble of Classifier Based Model

    Get PDF
    Health Monitoring System (HMS) is an excellent tool that actually saves lives. It makes use of transmitters to gather information and transmits it wirelessly to a receiver. Essentially, it is much more practical than the large equipment that the majority of hospitals now employ and continuously checks a patient's health data 24/7. The primary goal of this research is to develop a three-layered Ensemble of Classifier model on Edge based Healthcare Monitoring System (ECEHMS) and Gauss Iterated Pelican Optimization Algorithm (GIPOA) including data collection layer, data analytics layer, and presentation layer. As per our ECEHMS-GIPOA, the healthcare dataset is collected from the UCI repository. The data analytics layer performs preprocessing, feature extraction, dimensionality reduction and classification. Data normalization will be done in preprocessing step. Statistical features (Min/Max, SD, Mean, Median), improved higher order statistical features (Skewness, Kurtosis, Entropy), and Technical indicator based features were extracted during Feature Extraction step. Improved Fuzzy C-means clustering (FCM) will be used for handling the Dimensionality reduction issue by clustering the appropriate feature set from the extracted features. Ensemble model is introduced to predict the disease stage that including the models like Deep Maxout Network (DMN), Improved Deep Belief Network (IDBN), and Recurrent Neural Network (RNN). Also, the enhancement in prediction/classification accuracy is assured via optimal training. For which, a GIPOA is introduced. Finally, ECEHMS-GIPOA performance is compared with other conventional approaches like ASO, BWO, SLO, SSO, FPA, and POA
    corecore