47 research outputs found

    Enhancing Group Social Perceptiveness through a Swarm-based Decision-Making Platform

    Get PDF
    Swarm Intelligence is natural phenomenon that enables social animals to make group decisions in real-time systems. This process has been deeply studied in fish schools, bird flocks, and bee swarms, where collective intelligence has been observed to emerge. The present paper describes swarm.ai—a collaborative technology that enables swarms of humans to collectively converge upon a decision as a real-time system. Then we present the results of a study investigating if groups working as “human swarms” can amplify their social perceptiveness, a key predictor of collective intelligence. Results showed that groups reduced their social perceptiveness errors by more than half when operating as a swarm. A statistical analysis revealed with 99.9% confidence that groups working as swarms had significantly higher social perceptiveness than either individuals working alone or through plurality vote

    Towards Collective Superintelligence: Amplifying Group IQ using Conversational Swarms

    Full text link
    Swarm Intelligence (SI) is a natural phenomenon that enables biological groups to amplify their combined intellect by forming real-time systems. Artificial Swarm Intelligence (or Swarm AI) is a technology that enables networked human groups to amplify their combined intelligence by forming similar systems. In the past, swarm-based methods were constrained to narrowly defined tasks like probabilistic forecasting and multiple-choice decision making. A new technology called Conversational Swarm Intelligence (CSI) was developed in 2023 that amplifies the decision-making accuracy of networked human groups through natural conversational deliberations. The current study evaluated the ability of real-time groups using a CSI platform to take a common IQ test known as Raven's Advanced Progressive Matrices (RAPM). First, a baseline group of participants took the Raven's IQ test by traditional survey. This group averaged 45.6% correct. Then, groups of approximately 35 individuals answered IQ test questions together using a CSI platform called Thinkscape. These groups averaged 80.5% correct. This places the CSI groups in the 97th percentile of IQ test-takers and corresponds to an effective IQ increase of 28 points (p<0.001). This is an encouraging result and suggests that CSI is a powerful method for enabling conversational collective intelligence in large, networked groups. In addition, because CSI is scalable across groups of potentially any size, this technology may provide a viable pathway to building a Collective Superintelligence

    Conversational Swarm Intelligence (CSI) Enhances Groupwise Deliberation

    Full text link
    Real-time conversational deliberation is a critical groupwise method for reaching decisions, solving problems, evaluating priorities, generating ideas, and producing insights. Unfortunately, real-time conversations are difficult to scale, losing effectiveness as groups grow above 5 to 7 members. Conversational Swarm Intelligence (CSI) is a new technology modeled on the dynamics of biological swarms. It aims to enable networked groups of any size to hold productive real-time deliberations that converge on unified solutions. CSI leverages the power of Large Language Models (LLMs) in a unique and powerful way, allowing real-time dialog among small local groups while simultaneously enabling efficient content propagation across much larger populations. In this way, CSI combines the benefits of small-scale deliberative reasoning and large-scale collective intelligence. In this study, we compare deliberative groups of 48 people using standard online chat to the same sized groups using a prototype chat-based CSI system called Thinkscape. Results show that participants using CSI contributed 51% more content (p<0.001) than those using standard chat, and the deliberations using CSI showed 37% less difference in contribution quantity between the most active vs least active members, indicating more balanced dialog. And finally, a large majority of participants preferred deliberating using the CSI system over standard chat (p<0.05) and re-ported feeling more impactful when doing so (p<0.01). These results suggest that Conversational Swarm Intelligence is a promising technology for enabling large-scale deliberation.Comment: Accepted for publication: 7th International Joint Conference on Advances in Computational Intelligence (IJCACI 2023). Oct 14, 2023. New Delhi, India. arXiv admin note: text overlap with arXiv:2309.0322

    Conversational Swarm Intelligence (CSI) Enables Rapid Group Insights

    Full text link
    When generating insights from human groups, conversational deliberation is a key method for exploring issues, surfacing ideas, debating options, and converging on solutions. Unfortunately, real-time conversations are difficult to scale, losing effectiveness in groups above 4 to 7 members. Conversational Swarm Intelligence (CSI) is a new technology that enables large human groups to hold real-time conversations using techniques modeled on the dynamics of biological swarms. Through a novel use of Large Language Models (LLMs), CSI enables real-time dialog among small groups while simultaneously fostering content propagation across a much larger group. This combines the benefits of small-scale deliberative reasoning and large-scale groupwise intelligence. In this study, we engage a group of 81 American voters from one political party in real-time deliberation using a CSI platform called Thinkscape. We then task the group with (a) forecasting which candidate from a set of options will achieve the most national support, and (b) indicating the specific reasons for this result. After only six minutes of deliberation, the group of 81 individuals converged on a selected candidate and surfaced over 400 reasons justifying various candidates, including 206 justifications that supported the selected candidate. We find that the selected candidate was significantly more supported by group members than the other options (p<0.001) and that this effect held even after six minutes of deliberation, demonstrating that CSI provides both the qualitative benefits of conversational focus groups and the quantitative benefits of largescale polling.Comment: Copyright 2023 IEEE. arXiv admin note: substantial text overlap with arXiv:2309.1236

    Will Sentiment Analysis Need Subculture? A New Data Augmentation Approach

    Full text link
    The renowned proverb that "The pen is mightier than the sword" underscores the formidable influence wielded by text expressions in shaping sentiments. Indeed, well-crafted written can deeply resonate within cultures, conveying profound sentiments. Nowadays, the omnipresence of the Internet has fostered a subculture that congregates around the contemporary milieu. The subculture artfully articulates the intricacies of human feelings by ardently pursuing the allure of novelty, a fact that cannot be disregarded in the sentiment analysis. This paper strives to enrich data through the lens of subculture, to address the insufficient training data faced by sentiment analysis. To this end, a new approach of subculture-based data augmentation (SCDA) is proposed, which engenders six enhanced texts for each training text by leveraging the creation of six diverse subculture expression generators. The extensive experiments attest to the effectiveness and potential of SCDA. The results also shed light on the phenomenon that disparate subculture expressions elicit varying degrees of sentiment stimulation. Moreover, an intriguing conjecture arises, suggesting the linear reversibility of certain subculture expressions. It is our fervent aspiration that this study serves as a catalyst in fostering heightened perceptiveness towards the tapestry of information, sentiment and culture, thereby enriching our collective understanding.Comment: JASIS

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Digitalization and work life: How new technologies are changing task content and skill demand for five selected occupations.

    Get PDF
    OBJECTIVE OF THE STUDY: The objective of this study is to understand how digitalization and new technologies are changing task content and skill demand for five selected occupations: business managers, technology innovators, higher education teachers, healthcare professionals and cybersecurity experts. The aim is to study how the productivity of the work of these occupations can be increased by realizing the benefits offered by digitalization. Consequently, this study examines the future division of work between humans and computers and provides recommendations on the required skills and changes in the nature of work that will be increasingly in demand in the near future due to the changes induced by digitalization. METHODOLOGY AND THEORETICAL FRAMEWORK: In this study a theoretical framework based on the bottlenecks to computerization was used to predict future skill demand for the occupations under study. The research was conducted using qualitative multiple case study approach in which each occupation represents one case. The data for the study was collected using semi-constructed interviews with representatives of each of the occupations. There were altogether 26 interviews which were analyzed using theoretical propositions and cross-case comparisons between the different occupations. FINDINGS AND CONCLUSIONS: The main findings of this study indicate that despite of technological advancements, in the occupations under study humans still have a comparative advantage over computers in skills that require analytical and critical thinking, creative intelligence and social and emotional intelligence. Moreover, the common opportunities and challenges of digitalization among the occupations were identified and divided into three following main areas: information efficiency, technology efficiency and people efficiency. The benefits of digitalization can only be realized by tackling the identified challenges that prevent the increase in the efficiency of work for the occupations under study. The role of digitalization in each of the occupations differed depending on how digitalization has changed the efficiency of work and nature of work. For cybersecurity experts, who are diginatives, the changes in both work efficiency and nature of work have and will be constantly increasing. On the other hand, higher education teachers and healthcare professionals are emerging digitalists on the verge of digital transformation, as the needed changes in the nature of work have not yet occurred to increase the efficiency of work accordingly. For business managers, who are efficient digitalists, the increase in the efficiency of work has been significant. However, the changes in the nature of work have been relatively small. Lastly, for technology innovators the changes in the nature of work have been tremendous while the change in work efficiency has not yet been realized. Therefore, they are named as being digital reinventionists. In order to make the work more productive for these five occupations, it is necessary to have the right skills in place and change the nature of work to fit to the needs of the new digital economy

    The Augmented Learner : The pivotal role of multimedia enhanced learning within a foresight-based learning model designed to accelerate the delivery of higher levels of learner creativity

    Get PDF
    The central theme for this dissertation lies at the intersection of multisensory technology enhanced learning, the field of foresight and transformative pedagogy and their role in helping to develop greater learner creativity. These skills will be key to meeting the needs of the projected growing role of the creative class within the emerging global workforce structure and the projected growth in R&D and the advancement of human-machine resource management. Over the past two decades, we have traversed from the Industrial Age through the Information Age into what we now call postnormal times, manifested partly in Industry 4.0. It is widely considered that the present education system in countries with developed economies is not optimised for delivering the much-needed creative skills, which are prominent amongst the critical 21st C skills required by the creative class, (also known as creatives), which will be increasingly dominant in terms of near future employability. Consequently, there will be a potential shortfall of creatives unless this issue is rapidly addressed. To ensure that the creative skills I aimed to enhance were relevant and aligned with emerging demands of the changing landscape, I deconstructed the critical dimensions, context, and concept of creativity in postnormal times as well as undertaking in-depth research on the potential future workscape and the future of education and learning, applying a comprehensive foresight approach to the latter using a 2030-2040 horizon. Based upon the outcomes of these studies I designed an experimental integrative learning system that I have applied, researched, and evolved over the past 4 years with over 150 students at PhD and master’s level. The system is aimed at generating higher levels of creative engagement and development through a focus on increased immersion and creativity-inducing approaches. The system, which I call the Living Learning System, is based upon eight integrated elements, supported by course development pillars aimed at optimizing learner future skill competencies and levels of creativity for which I apply severalevaluation techniques and metrics. Accordingly, as the central hypothesis of this dissertation, I argue that by integrating the critical elements of the Living Learning System, such as emerging multisensory technology enhanced learning coupled with optimised transformative and experiential learning approaches, framed within the field of foresight, with its futures focus and decentralised thinking approaches, students increase their ability to be creative. This increased ability is based on the student attaining a richer level of personal ambience through deeper immersion generated through higher incidence of self-direction, constructivism-based blended pedagogy, futures literacy, and a balance of decentralised and systems-based thinking, as well as cognitive and social platforms aimed at optimizing learner creative achievement. This dissertation demonstrates how the application of the combined elements of the Living Learning System, with its futures focus and its ensuing transdisciplinary curricula and courses, can provide a clear path towards significantly increased learner creativity. The findings of the quantitative, questionnaire-based research set out in detail in Chapter 9, together with the performance and creativity evaluation models applied against the selected case studies of student projects substantiate the validity of the hypothesis that the application of the Living Learning System with its futures focus leads to increased creativity in line with the needs of the postnormal era.publishedVersio

    Systems biology approaches to the computational modelling of trypanothione metabolism in Trypanosoma brucei

    Get PDF
    This work presents an advanced modelling procedure, which applies both structural modelling and kinetic modelling approaches to the trypanothione metabolic network in the bloodstream form of Trypanosoma brucei, the parasite responsible for African Sleeping sickness. Trypanothione has previously been identified as an essential compound for parasitic protozoa, however the underlying metabolic processes are poorly understood. Structural modelling allows the study of the network metabolism in the absence of sufficient quantitative information of target enzymes. Using this approach we examine the essential features associated with the control and regulation of intracellular trypanothione level. The first detailed kinetic model of the trypanothione metabolic network is developed, based on a critical review of the relevant scientific papers. Kinetic modelling of the network focuses on understanding the effect of anti-trypanosomal drug DFMO and examining other enzymes as potential targets for anti-trypanosomal chemotherapy. We also consider the inverse problem of parameter estimation when the system is defined with non-linear differential equations. The performance of a recently developed population-based PSwarm algorithm that has not yet been widely applied to biological problems is investigated and the problem of parameter estimation under conditions such as experimental noise and lack of information content is illustrated using the ERK signalling pathway. We propose a novel multi-objective optimization algorithm (MoPSwarm) for the validation of perturbation-based models of biological systems, and perform a comparative study to determine the factors crucial to the performance of the algorithm. By simultaneously taking several, possibly conflicting aspects into account, the problem of parameter estimation arising from non-informative experimental measurements can be successfully overcome. The reliability and efficiency of MoPSwarm is also tested using the ERK signalling pathway and demonstrated in model validation of the polyamine biosynthetic pathway of the trypanothione network. It is frequently a problem that models of biological systems are based on a relatively small amount of experimental information and that extensive in vivo observations are rarely available. To address this problem, we propose a new and generic methodological framework guided by the principles of Systems Biology. The proposed methodology integrates concepts from mathematical modelling and system identification to enable physical insights about the system to be accounted for in the modelling procedure. The framework takes advantage of module-based representation and employs PSwarm and our proposed multi-objective optimization algorithm as the core of this framework. The methodological framework is employed in the study of the trypanothione metabolic network, specifically, the validation of the model of the polyamine biosynthetic pathway. Good agreements with several existing data sets are obtained and new predictions about enzyme kinetics and regulatory mechanisms are generated, which could be tested by in vivo approaches

    Context-aware Plan Repair in Environments shared by Multiple Agents

    Full text link
    [ES] La monitorización de la ejecución de un plan es crucial para un agente autónomo que realiza su labor en un entorno dinámico, pues influye en su capacidad de reaccionar ante los cambios. Mientras ejecuta su plan puede sufrir un fallo y, en su esfuerzo por solucionarlo, puede interferir sin saberlo con otros agentes que operan en su mismo entorno. Por otra parte, para actuar racionalmente es necesario que el agente sea consciente del contexto y pueda recopilar y ampliar su información a partir de lo que percibe para poder compensar su conocimiento previo parcial o incorrecto del problema y lograr el mejor resultado posible ante las nuevas situaciones que aparecen. El trabajo realizado en esta tesis permite a los agentes autónomos ejecutar sus planes en un entorno dinámico y adaptarse a eventos inesperados y circunstancias desconocidas. Pueden utilizar su percepción del contexto para proporcionar respuestas deliberativas conscientes y ser capaces así de aprovechar las oportunidades que surgen o reparar los fallos sin perturbar a otros agentes. Este trabajo se centra en el desarrollo de una arquitectura independiente del dominio capaz de manejar las necesidades de agentes con este tipo de comportamiento autónomo. Los tres pilares de la arquitectura propuesta los forman el sistema inteligente para la simulación de la ejecución en entornos dinámicos, la adquisición de conocimiento consciente del contexto para ampliar la base de datos del agente y la reparación de planes ante fallos u oportunidades tratando de interferir lo mínimo con los planes de otros agentes. El sistema inteligente de simulación de la ejecución permite al agente representar el plan en una línea de tiempo, actualizar periódicamente su estado interno con información del mundo real y disparar nuevos eventos en momentos concretos. Los eventos se procesan en el contexto del plan; si se detecta un error, el simulador reformula el problema de planificación, invoca de nuevo al planificador y reanuda la ejecución. El simulador es una aplicación de consola y ofrece una interfaz gráfica diseñada específicamente para una aplicación inteligente de turismo. El módulo de adquisición de conocimiento sensible al contexto utiliza operaciones semánticas para aumentar dinámicamente la lista predefinida de tipos de objetos de la tarea de planificación con nuevos tipos relevantes. Esto permite que el agente sea consciente de su entorno, enriquezca el modelo de su tarea y pueda razonar a partir de un conocimiento incompleto. Con todo esto se consigue potenciar la autonomía del sistema y la conciencia del contexto. La novedosa estrategia de reparación de planes le permite a un agente reparar su plan al detectar un fallo de manera responsable con el resto de agentes que comparten su mismo entorno de ejecución. El agente utiliza una nueva métrica, el compromiso del plan, como función heurística para guiar la búsqueda hacia un plan solución comprometido con el plan original, en el sentido de que se trata de respetar los compromisos adquiridos con otros agentes al mismo tiempo que se alcanzan los objetivos originales. En consecuencia, la comunidad de agentes sufrirá menos fallos por cambios bruscos en el entorno o requerirá menos tiempo para ejecutar las acciones correctoras si el fallo es inevitable. Estos tres módulos han sido desarrollados y evaluados en varias aplicaciones como un asistente turístico, una agencia de reparación de electrodomésticos y un asistente del hogar.[CA] El monitoratge de l'execució d'un pla és crucial per a un agent autònom que realitza la seua labor en un entorn dinàmic, perquè influeix en la seua capacitat de reaccionar davant els canvis. Mentre executa el seu pla pot patir una fallada i, en el seu esforç per solucionar-lo, pot interferir sense saber-ho amb altres agents que operen en el seu mateix entorn. D'altra banda, per a actuar racionalment és necessari que l'agent siga conscient del context i puga recopilar i ampliar la seua informació a partir del que percep per a poder compensar el seu coneixement previ parcial o incorrecte del problema i aconseguir el millor resultat possible davant les noves situacions que apareixen. El treball realitzat en aquesta tesi permet als agents autònoms executar els seus plans en un entorn dinàmic i adaptar-se a esdeveniments inesperats i circumstàncies desconegudes. Poden utilitzar la seua percepció del context per a proporcionar respostes deliberatives conscients i ser capaces així d'aprofitar les oportunitats que sorgeixen o reparar les fallades sense pertorbar a altres agents. Aquest treball se centra en el desenvolupament d'una arquitectura independent del domini capaç de manejar les necessitats d'agents amb aquesta mena de comportament autònom. Els tres pilars de l'arquitectura proposada els formen el sistema intel·ligent per a la simulació de l'execució en entorns dinàmics, l'adquisició de coneixement conscient del context per a ampliar la base de dades de l'agent i la reparació de plans davant fallades o oportunitats tractant d'interferir el mínim amb els plans d'altres agents. El sistema intel·ligent de simulació de l'execució permet a l'agent representar el pla en una línia de temps, actualitzar periòdicament el seu estat intern amb informació del món real i disparar nous esdeveniments en moments concrets. Els esdeveniments es processen en el context del pla; si es detecta un error, el simulador reformula el problema de planificació, invoca de nou al planificador i reprén l'execució. El simulador és una aplicació de consola i ofereix una interfície gràfica dissenyada específicament per a una aplicació intel·ligent de turisme. El mòdul d'adquisició de coneixement sensible al context utilitza operacions semàntiques per a augmentar dinàmicament la llista predefinida de tipus d'objectes de la tasca de planificació amb nous tipus rellevants. Això permet que l'agent siga conscient del seu entorn, enriquisca el model de la seua tasca i puga raonar a partir d'un coneixement incomplet. Amb tot això s'aconsegueix potenciar l'autonomia del sistema i la consciència del context. La nova estratègia de reparació de plans li permet a un agent reparar el seu pla en detectar una fallada de manera responsable amb la resta d'agents que comparteixen el seu mateix entorn d'execució. L'agent utilitza una nova mètrica, el compromís del pla, com a funció heurística per a guiar la cerca cap a un pla solució compromés amb el pla original, en el sentit que es tracta de respectar els compromisos adquirits amb altres agents al mateix temps que s'aconsegueixen els objectius originals. En conseqüència, la comunitat d'agents patirà menys fallades per canvis bruscos en l'entorn o requerirà menys temps per a executar les accions correctores si la fallada és inevitable. Aquests tres mòduls han sigut desenvolupats i avaluats en diverses aplicacions com un assistent turístic, una agència de reparació d'electrodomèstics i un assistent de la llar.[EN] Execution Monitoring is crucial for the success of an autonomous agent executing a plan in a dynamic environment as it influences its ability to react to changes. While executing its plan in a dynamic world, it may suffer a failure and, in its endeavour to fix the problem, it may unknowingly disrupt other agents operating in the same environment. Additionally, being rational requires the agent to be context-aware, gather information and extend what is known from what is perceived to compensate for partial or incorrect prior knowledge and achieve the best possible outcome in various novel situations. The work carried out in this PhD thesis allows the autonomous agents executing a plan in a dynamic environment to adapt to unexpected events and unfamiliar circumstances, utilise their perception of context and provide context-aware deliberative responses for seizing an opportunity or repairing a failure without disrupting other agents. This work is focused on developing a domain-independent architecture capable of handling the requirements of such autonomous behaviour. The architecture pillars are the intelligent system for execution simulation in a dynamic environment, the context-aware knowledge acquisition for planning applications and the plan commitment repair. The intelligent system for execution simulation in a dynamic environment allows the agent to transform the plan into a timeline, periodically update its internal state with real-world information and create timed events. Events are processed in the context of the plan; if a failure occurs, the simulator reformulates the planning problem, reinvokes a planner and resumes the execution. The simulator is a console application and has a GUI designed specifically for smart tourism. The context-aware knowledge acquisition module utilises semantic operations to dynamically augment the predefined list of object types of the planning task with relevant new object types. This allows the agent to be context-aware of the environment and the task and reason with incomplete knowledge, boosting the system's autonomy and context-awareness. The novel plan commitment repair strategy among multiple agents sharing the same execution environment allows the agent to repair its plan responsibly when a failure is detected. The agent utilises a new metric, plan commitment, as a heuristic to guide the search for the most committed repair plan to the original plan from the perspective of commitments made to other agents whilst achieving the original goals. Consequently, the community of agents will suffer fewer failures due to the sudden changes or will have less lost time if the failure is inevitable. All these developed modules were investigated and evaluated in several applications, such as a tourist assistant, a kitchen appliance repair agency and a living home assistant.Babli, M. (2023). Context-aware Plan Repair in Environments shared by Multiple Agents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19868
    corecore