4 research outputs found

    Enhancements of G3-PLC technology for smart-home/building applications

    Get PDF
    To enable the smart grid concept, it is fundamental to consider the in-home/building context where, beside the conventional home networking services, home automation and smart energy management services have to be offered. In this paper, we consider the in-home/building scenario, for which we propose a convergent network architecture to enhance the performance of the narrowband power line communication (PLC) G3-PLC technology through its integration with an Ethernet-based network. To this end, we define the protocols characterizing the network modules, namely, switches and routers, which allow for integrating the G3-PLC with Ethernet devices. Since Ethernet represents a convergent standard for many communication devices, by adding this functionality to G3-PLC, interconnectivity with other heterogeneous nodes can be offered. Furthermore, since the G3-PLC medium access control layer is based on a carrier sense multiple access scheme, its performance decreases when the number of network nodes contending for the channel increases. Therefore, we evaluate the network performance when an optimized time division multiple access scheme is adopted. The proposed convergent network architecture has been implemented in the OMNeT++ network simulator

    DEVELOPMENT OF AN OPTIMAL TECHNIQUE FOR RELIABILITY ANALYSIS OF POWER LINE COMMUNICATION SYSTEM FOR SMART GRID REALIZATION

    Get PDF
    Power Line Communication (PLC) is a communication technology that enables transmission of data on a conductor which is also used for electric power transmission. The development of a PLC system presents a significant challenge for the communication engineer due to the unusual channel characteristics that affect high-speed signal transmission since the electric power grid is designed to operate at 50/60 Hz. In addition, the topology of electric power grid network is often very irregular resulting in significant dispersion of the transmitted message signals as it is susceptible to noise and attenuation due to power lines being primarily used for transmission of electricity as a result of its viability for smart grid realization. This study therefore investigates the reliability analysis of PLC for Smart Grid (SG) realization using clipping and Turbo equalizer techniques to reduce the effects of noise and attenuation in narrowband (9-490 kHz) PLC system respectively. This optimal technique is based on the minimum Bit Error Rate (BER) search. The results show that the technique used improves the BER performance of the narrowband PLC system for smart grid realization. The result of this study provides a reliable communication and control for cost efficiency of existing power line infrastructure for Smart Grid. Keywords: PLC, Smart Grid, Attenuation, Clipping, Equalizer, Electric Power Transmission, Bit Error Rate. DOI: 10.7176/MTM/9-8-01 Publication date: August 31st 2019

    POWER LINE COMMUNICATIONS FOR SMART HOME NETWORKS: MODELING, SIMULATION AND OPTIMIZATION

    Get PDF
    In recent years, research and development efforts are devoted to the deployment of information and communication technology (ICT) within residential buildings and houses, in order to provide services that will increase the quality of life. Although this trend is originated in the late 60’s as a result of the application of industrial automation to residential buildings and houses, i.e., home automation, nowadays, further services are offered to the final users, i.e., home networking and energy management. In fact, a lot of effort is put on the joint delivery of these services in order to make the home, namely the smart home (SH), an integral part of the future smart grid (SG). The concept of SH can be described as a house equipped with electronic systems and appliances, namely, “smart” appliances, which are able to exchange information by means of a communication network. However, these systems are characterized by a broad variety of communication technologies, standards and protocols, so that they often cannot interconnect, and/or interoperate and in some cases even coexist. In our opinion, coexistence, interconnection and interoperability problems represents the bottleneck to a pervasive deployment of smart appliances and systems within residential buildings and houses. To this respect, the first topic that we consider in this thesis is the definition of the SH network architecture and devices, which allows to obtain convergence among smart appliances. To this aim, a survey of the communication technologies, standards, protocols and also media, which can be used for SH applications, is necessary in order to define a network topology that is able to be scalable, extensible, and rather reliable. Moreover, in order to achieve interconnectivity among “smart” appliances, we define a shared common layer that is able to manage heterogeneous lower layers allowing network convergence. Once defined the SH network architecture and its network devices, we focus on power line communication (PLC) technologies and we implement a network testbed in order to evaluate some of the functionalities of the SH network within real environments. From the analysis of field trial data, we are able to highlight performances and disadvantages of two representative narrow band PLC (NB-PLC) solutions. Furthermore, exploiting the network testbed where broadband PLC (BB-PLC) technology is used to provide an Ethernet backbone for NB-PLC devices, we achieve interconnectivity between heterogeneous devices and we observe a significant improvement of the performances. Although NB-PLC technologies have been conceived for the development of low data rate applications and, in particular, for automatic meter reading (AMR), we focus our attention on the G3-PLC technology, for which we propose enhancements at the medium access control (MAC) sub-layer to allow the implementation of SH applications that could potentially require higher data rate than AMR. The G3-PLC technology has been taken into account since (i) it has been used as baseline technology for the development of popular communication standards for SG applications, and (ii) we have found, from the field trials, that the performance of NB-PLC may be poor in large houses where the signal is strongly attenuated because it spans large distances and crosses different circuit breakers (CBs), e.g., in multi-floor houses. Furthermore, an innovative cross-platform simulator that allows to realistically simulate the G3-PLC technology up to the network layer is presented. The proposed cross-platform consists of two different simulators jointly connected: one for the physical (PHY) layer and one for the data link layer (DLL)/network layer (NL). The PHY layer simulator is implemented in MATLAB, while the DLL/network simulator in OMNeT++. A convergent network architecture that permits the integration of the G3-PLC technology within a switched Ethernet network is also presented with the aim of improving the G3-PLC performance in large scale houses/buildings. The performance of the considered communication technology are presented through extensive numerical results for the in-home application scenario. Finally, the cross-platform simulator is used to evaluate G3-PLC systems for SG applications in the access network scenario. This is fundamental since the interaction of the outside world, i.e., the access network, with the SH is mandatory in order to achieve and exploit the SG concept. Moreover, to improve the performance and coverage of G3-PLC, a simple adaptive tone mapping algorithm together with a routing algorithm are also presented.Ricerca condotta all'interno del WiPLi Lab/Wireless and Power Line Communications LaboratoryopenDottorato di ricerca in Ingegneria industriale e dell'informazioneopenDI BERT, Luc
    corecore