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Abstract

In recent years, research and development efforts are devoted to the deploy-

ment of information and communication technology (ICT) within residential

buildings and houses, in order to provide services that will increase the quality

of life. Although this trend is originated in the late 60’s as a result of the

application of industrial automation to residential buildings and houses, i.e.,

home automation, nowadays, further services are offered to the final users, i.e.,

home networking and energy management. In fact, a lot of effort is put on the

joint delivery of these services in order to make the home, namely the smart

home (SH), an integral part of the future smart grid (SG). The concept of SH

can be described as a house equipped with electronic systems and appliances,

namely, “smart” appliances, which are able to exchange information by means

of a communication network. However, these systems are characterized by a

broad variety of communication technologies, standards and protocols, so that

they often cannot interconnect, and/or interoperate and in some cases even

coexist.

In our opinion, coexistence, interconnection and interoperability problems

represents the bottleneck to a pervasive deployment of smart appliances and

systems within residential buildings and houses. To this respect, the first topic

that we consider in this thesis is the definition of the SH network architecture

and devices, which allows to obtain convergence among smart appliances. To

this aim, a survey of the communication technologies, standards, protocols

xix



Abstract

and also media, which can be used for SH applications, is necessary in order

to define a network topology that is able to be scalable, extensible, and rather

reliable. Moreover, in order to achieve interconnectivity among “smart” appli-

ances, we define a shared common layer that is able to manage heterogeneous

lower layers allowing network convergence.

Once defined the SH network architecture and its network devices, we fo-

cus on power line communication (PLC) technologies and we implement a

network testbed in order to evaluate some of the functionalities of the SH net-

work within real environments. From the analysis of field trial data, we are

able to highlight performances and disadvantages of two representative narrow

band PLC (NB-PLC) solutions. Furthermore, exploiting the network testbed

where broadband PLC (BB-PLC) technology is used to provide an Ethernet

backbone for NB-PLC devices, we achieve interconnectivity between heteroge-

neous devices and we observe a significant improvement of the performances.

Although NB-PLC technologies have been conceived for the development

of low data rate applications and, in particular, for automatic meter read-

ing (AMR), we focus our attention on the G3-PLC technology, for which we

propose enhancements at the medium access control (MAC) sub-layer to allow

the implementation of SH applications that could potentially require higher

data rate than AMR. The G3-PLC technology has been taken into account

since (i) it has been used as baseline technology for the development of popular

communication standards for SG applications, and (ii) we have found, from

the field trials, that the performance of NB-PLC may be poor in large houses

where the signal is strongly attenuated because it spans large distances and

crosses different circuit breakers (CBs), e.g., in multi-floor houses.

Furthermore, an innovative cross-platform simulator that allows to realis-

tically simulate the G3-PLC technology up to the network layer is presented.

The proposed cross-platform consists of two different simulators jointly con-

nected: one for the physical (PHY) layer and one for the data link layer (DLL)/

network layer (NL). The PHY layer simulator is implemented in MATLAB,

while the DLL/network simulator in OMNeT++. A convergent network ar-

chitecture that permits the integration of the G3-PLC technology within a

xx



switched Ethernet network is also presented with the aim of improving the

G3-PLC performance in large scale houses/buildings. The performance of the

considered communication technology are presented through extensive numer-

ical results for the in-home application scenario.

Finally, the cross-platform simulator is used to evaluate G3-PLC systems

for SG applications in the access network scenario. This is fundamental since

the interaction of the outside world, i.e., the access network, with the SH

is mandatory in order to achieve and exploit the SG concept. Moreover, to

improve the performance and coverage of G3-PLC, a simple adaptive tone

mapping algorithm together with a routing algorithm are also presented.

xxi
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Chapter 1

Introduction

In this thesis, we focus on the smart home (SH) networks. In particular, we de-

fine a general SH network architecture together with its main network devices,

protocols and procedures in order to address challenging issues (i.e., the coex-

istence, the interconnectivity and the interoperability) as well as to improve

the network performances. Moreover, focusing on a representative power line

communication (PLC) technology, we model its physical (PHY) and medium

access control (MAC) behavior in order to better characterize its performances

within a home scenario. We also propose an innovative contention-free MAC

scheme to provide performance improvements. Finally, we present a cross-

platform simulator which allows to realistically simulate the PLC technology

within in-home scenarios. For sake of completeness, we use the cross-platform

simulator to evaluate the PLC technology in an outdoor, i.e., access network,

scenario.

In this chapter, we set the background of the thesis, and we give an overview

of its organization. More precisely, in Section 1.1, we introduce the road to

smart home (SH) and we describe the SH concept. Then, in Section 1.2, we set

the objectives of the thesis and we give a brief outline. Finally, in Section 1.3,

we list the papers where part of the work of this thesis has been published.

1



Chapter 1 - Introduction

1.1 From Home Automation to the Smart Home

Home automation concept is often confused with SH concept. Nevertheless,

the home automation concept (also known as domotics), is originated in the

late 60’s as a result of the application of industrial automation to residen-

tial buildings and houses. It refers to the use of computer and information

technology to control home appliances and features. Some examples of home

automation are: remote doors/gates lock, and centralized control of lighting

and heating, ventilation and air conditioning (HVAC). In order to satisfy the

growing of home automation services, industrials started to develop home

automation systems and technologies in the early 70s thus, nowadays, systems

and technologies are widely available.

Besides home automation services, in recent years, new concepts such as

ubiquitous and pervasive computing have been largely developed with the aim

of moving people and machines closer. In fact, research and development

efforts are put on the deployment of information and communication technol-

ogy (ICT) within houses and buildings to provide services that will improve

quality of life. In this perspective a relevant role is played by the delivery of

broadband Internet access that enables a huge development of home net-

working services.

On the other hand, due to sustainable development issues, the housing has

become an attractive focus for industrials and academia. In order to achieve

power saving targets, the smart energy management is identified as funda-

mental objective. Moreover, the efficiency increase of the power distribution

grid, which includes houses and buildings, is a worldwide priority and. This is

going to shift the vision of the power grid to a distributed large scale system

that needs to smartly manage flows of electricity produced by big or small

plants, i.e., a smart grid (SG). Therefore, since the house is considered as a

part of the power distribution grid, it is necessary to develop and offer energy

management services.

From the previous discussion, it is now clear that the joint delivery of home

automation, home networking and energy management services is mandatory

2



1.1 - From Home Automation to the Smart Home

to realize the the smart home (SH) concept, as depicted in Figure 1.1. The

main difference with home automation is the transversal layer covered by this

solution. In fact, the SH needs an overall architecture, including home automa-

tion systems (usually autonomous) as well as external services, such as high

speed Internet access, home entertainment, and management of local energy

production (e.g., solar panels).

Energy 

Management

Home 

Automa!on

Home Networking

Figure 1.1: The Smart Home services.

In a schematic way, the SH can be described as a house equipped with

electronic appliances, namely, “smart” appliances, which are able to exchange

information by means of a communication network. These appliances are con-

nected to a home network (i.e., the SH network) in order to send information

about their states and/or receive instructions. The home network allows to

transport information between smart appliances and a residential gateway,

which is responsible of the management of smart appliances and allows for

connecting the SH to the outside world, i.e., the Internet and/or the the

energy service provider (ESP) network. In this perspective, the SH is fully

connected, controlled externally as well as internally. This statement is funda-

mental since the interaction of the outside world with the home is mandatory
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in order to achieve and exploit the SG concept.

1.2 Thesis Objectives and Outline

As described in the previous section, the SH concept deals with the seam-

less offer of different services. Since, each service can be delivered through

heterogeneous communication technologies, standards and protocols, the SH

needs a accurate network design in order to avoid problems related to coexis-

tence, interconnectivity and interoperability. In this context, in Chapter 2 we

firstly survey the state-of-the-art of communication technologies for in-home

networks. Then, the we provide detailed specifications for the SH network

architecture and executive procedures for the networking devices, which is the

first objective of the thesis.

Once defined the specifications, another interesting topic discussed in Chap-

ter 3 is the realization of a network testbed in order to evaluate the SH network

previously presented. By means of a trial campaign performed in real envi-

ronments, some of the functionalities of the SH network have been evaluated.

Moreover, since the network testbed is mainly focused on NB-PLC technolo-

gies for SG applications, we evaluate their performances taking into account to

the in-home scenario. Eventually, exploiting the BB-PLC technology, we have

improved NB-PLC performances and we have extended the network coverage.

Nevertheless, the analysis of performances obtained through field test trials

are influenced by hardware platforms and are limited to few network nodes.

Therefore, we think that an exhaustive performance analysis needs the devel-

opment of a network simulator. To this respect, in Chapter 4, we face with the

implementation of the main communication technologies and network devices

in order to build a realistic simulation environment. Focusing on G3-PLC

and Ethernet technologies, the simulator allows to inspect the network perfor-

mances in peculiar and boundary conditions. From this exhaustive analysis,

we point out another interesting objective, i.e., the enhancement of G3-PLC

MAC by the introduction of a contention-free access scheme. We notice that

the choice of considering the G3-PLC solution is motivated by the two following

reasons: (i) it has been used as baseline technology for the nowadays standard,
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and (ii) it has been used for field trials and has exhibited poor performances

in large houses.

In order to improve the network simulator built in Chapter 4, we propose

an innovative approach to realistically simulate the G3-PLC technology in

Chapter 5. In fact, another interesting objective of the thesis, is the simulation

methodology proposed, which consist of two different simulators, one for the

physical (PHY) layer and one for the data link layer (DLL)/network layer

(NL), jointly connected. This approach is due to the implementation issues

related to physical (PHY) layer modeling within today’s network simulators,

which have not been thought for these purposes. It is worth noting that,

the cross-platform simulator can be used to verify whether a communication

technology, e.g., G3-PLC, satisfies a given set of requirements for a certain

application scenario.

In this perspective, the cross-platform simulator is used to evaluate G3-

PLC systems for SG applications in the access network scenario. Although

its is partially out of the scope of this thesis, it is interesting to present G3-

PLC performances in outdoor environment since the SH network has to be

connected to the access network in order to enable the SG concept. Moreover,

to improve the performance and coverage of G3-PLC, we propose a simple

adaptive tone mapping algorithm together with a routing algorithm.

Finally, the conclusions follow in Chapter 7. Figure 1.2 summarize the

structure of the thesis.
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Figure 1.2: Thesis structure.
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Chapter 2

The Smart Home Network

Several communication technologies, which are suitable for in-home applica-

tions, are nowadays available on the market. However, they make use of dif-

ferent media and protocols to communicate, and consequently, they may not

be able to provide interconnectivity, interoperability and in some cases even

coexistence. This is one of the major obstacles for the realization of the smart

home, i.e., an environment where heterogeneous services like home network-

ing, home automation and energy management (making it an integral part

of the future SG), are offered transparently to the final users. This chapter

firstly surveys existing wireline, wireless and PLC technologies, then presents

a network architecture, which enables scalability and provides convergence for

communication technologies. Interconnectivity is reached through the defini-

tion of a shared common network layer while interoperability can be obtained

via middleware solutions.

2.1 Introduction

Research and development efforts are currently devoted to the deployment

of information and communication technology (ICT) within houses and build-

ings to provide services that will improve quality of life. Among these services,

three classes can be identified: home networking, home automation, and smart

energy management. Home networking services, e.g., triple play (high speed
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Internet access, television, telephone), infotainment, and resource sharing in

local area network (LAN), are those that usually require high speed communi-

cation systems. On the other hand, home automation services are those that

usually require low speed communication systems, e.g., for the automation of

windows and doors, for the control of HVAC, for lighting and audio/video dis-

tribution. While home networking and home automation are well-established

applications, smart energy management has only recently attracted significant

interest. This is because the efficiency increase is a worldwide priority of the

power distribution grid which includes houses and buildings. Energy efficiency

and power savings were identified in 2010 as fundamental objectives to con-

tribute to the Sustainable Growth specified in the “Europe 2020” strategy [1].

In the near future, the power grid will become a distributed large scale system

that needs to smartly manage flows of electricity produced by big or small

plants, i.e., a SG [2, 3]. An important role is played by communication tech-

nologies that enable, in the home/building context, the smart management

of household appliances, power metering, the control of local renewable en-

ergy plants (e.g., photovoltaic generators) the monitoring of electric vehicles

charge, etc.. These technologies will allow the implementation of demand side

and demand response mechanisms so that prosumers will actively collaborate

in the use and delivery of energy.

From the previous discussion, it is evident that the realization of the smart

home (SH) requires the joint delivery of home networking, home automation

and energy management services. Despite the existence on the market of a

broad variety of communication technologies, the bottleneck to their pervasive

deployment is that they often cannot interconnect, and/or interoperate and in

some cases even coexist.

In the rest of the chapter, coexistence and interconnectivity are discussed in

Section 2.2 while interoperability is discussed in Section 2.3 together with cur-

rent key middleware solutions. A survey of the communication technologies,

which can be used for SH applications, is presented in Section 2.4. As ex-

plained, in general, these technologies operate over different media and/or use

different standard/protocols. Therefore, they may lack for interconnectivity.
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To solve this problem, in Section 2.5, a SH network architecture is described.

It potentially enables for connectivity, scalability, flexibility, distributed con-

trol, reliability, and easy integration of different communication technologies,

thanks to the use of a shared common network layer that is able to manage

heterogeneous lower layers. Finally, main findings follow in Section 2.6.

2.2 Coexistence and Interconnectivity

The coexistence is a very rich and complex topic. However, a standing defini-

tion for coexistence in given in [4]: the ability of one system to perform a task

in a given shared environment where other systems may or may not be using

the same set of rules. The coexistence is a well-known concept that arise when

dealing with physical broadcast medium, e.g., wireless and PLC, and related

to the ability of sharing the same physical medium by two or more devices.

Usually, the coexistence is obtained regulating different frequency bands at

the PHY layer, or through the use of MAC protocols.

The interconnectivity is another challenging topic. It is the capability of

systems to exchange information regardless of their own environment and/or

set of rules. In telecommunications, it is the ability of systems to exchange

data regardless of the heterogeneity of their own communication technology,

standard and protocol. Clearly, interconnectivity requires coexistence and and

can be achieved with a convergent layer either above the PHY or above the

DLL, e.g., the network layer.

Industrial and standardization organizations are facing with these chal-

lenging topics. Representative examples are: as regards wireless communica-

tions, the IEEE 802.19 working group [5] develops standards for coexistence

between wireless standards of unlicensed devices and reviews coexistence as-

surance (CA) documents produced by working groups developing new wireless

standards for unlicensed devices; as regard PLC, the IEEE P1901 working

group [6] with its Technical Subgroup 4 (TSG4, dedicated to coexistence)

presented a draft annex describing the Inter-System Protocol (ISP) that en-

ables various BB-PLC devices and systems to share communication resources

(frequency/time) when installed in a network with common electrical wiring.
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Furthermore, the G.hn standard [7], ratified by International Telecommunica-

tion Union - Telecommunication Standardization Sector (ITU-T) [8], has been

conceived with the aim of offering interconnectivity among in-home high speed

communication devices that work over telephone wires, power lines, and coax

(G.hn specifies the PHY and the MAC layers and addresses the coexistence

between protocols that operate on different media); the solution developed

within the EU-FP7 OMEGA project [9], according to which devices belonging

to the OMEGA network share the same inter-MAC layer and consequently

they can coexist and they are interconnected.

To this aim, in the Section 2.4, we survey the communication technologies

that can be used for SH applications

2.3 Interoperability and Middleware Solutions

In general, interoperability is referred to the capability to communicate, exe-

cute programs, or transfer data among various functional units in a manner

that requires the end user to have little or no knowledge of the unique char-

acteristics of those units [10]. Focusing on network domain, it is the ability to

send and receive data between interconnected devices or networks providing

the level of quality expected by the end user without any negative impact to the

sending/receiving devices or networks. Clearly, from the previous definition,

interoperability requires interconnection which, in turn, requires coexistence.

Therefore, the interoperability concept is related to network up to applica-

tion layer. In fact, data exchanged between two systems (devices or networks)

has to be meaningfully and accurately interpreted in order to produce useful

results as defined by the end users of both systems. Therefore, since interop-

erability handles the semantic of data, it requires a common reference model

where information exchanged are unambiguously defined.

In this perspective, in order to realize the presented SH network, we deem

to reconsider the SH network according to the distributed systems theory,

where devices communicate and coordinate their actions exchanging messages

by means of a communication network [11]. In such a system, the interoper-

ability among network devices can be achieved through the introduction of a
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higher level of abstraction: the middleware layer. Then, the management of

services – which can be centralized or distributed, e.g., home networking, home

automation, and energy management, – will rely on the application software.

Network opera!ng system

Middleware

…

Physical

Network

Transport

Session

Presenta!on

Applica!on

Network access

Internet

Transport

Applica!on

Data link

ISO/OSI TCP/IP

Network access

App App App App

Distributed system

Figure 2.1: ISO/OSI, TCP/IP and distributed system protocol stack.

The middleware is a software layer placed between the network operating

system and the applications as depicted in Figurefig:middleware. Its aim is

to simplify access to heterogeneous and distributed resources. It provides a

higher degree of abstraction in distributed system programming by decoupling

applications from the lower layers consisting of heterogeneous operating sys-

tems, hardware platforms and communication protocols. In this perspective,

the most relevant middleware solutions are the Universal Plug and Play [12],

the Open Service Gateway initiative [13] and the Java intelligent network in-

frastructure [14].

2.3.1 Universal Plug and Play

UPnP is an emerging standard based on a peer-to-peer software architecture

for network connectivity of, possibly, any kind of electronic device. The frame-

work is designed to be independent of any particular operating system, pro-

gramming language and physical medium. It is also open and based on the

TCP/IP protocol stack. Devices belonging to an UPnP network can be classi-

fied into controlled devices (or simply devices) and control points. A controlled

device acts as a server, responding to client requests from control points. Note

that, a device and a control point can operate simultaneously on the same
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physical node.

Network access

IP

TCP UDP

HTTP HTTPU

XML SOAP GENA HTML SSDP

UPnP DCP

…App App App App

Figure 2.2: UPnP protocol stack.

As shown in Figure 2.2, the engine of this framework is given by the Device

Control Protocol (DCP). It defines the communication between devices and

control points exploiting well known protocols and languages, e.g., addressing

(DHCP or AutoIP), discovery (SSDP), description (XML), control (SOAP),

eventing (GENA) and presentation (HTML). Therefore, the UPnP network

does not require any configuration from the user. In fact, once a device (or

a control point) is connected to the network, it is automatically detected and

configured. Furthermore, it exchanges information with the network about

services provided and capabilities offered. However, since UPnP is based on

the TCP/IP protocol stack, the connectivity among heterogeneous network

devices, which are non IP-based, is not always ensured.

Currently, UPnP has been applied for multimedia applications such as

audio or video streaming by the digital living network alliance [15]. Unfortu-

nately, its application for home automation and energy management services

may be limited due to the complexity of running the protocol stack inside

devices with low computational capability, e.g., sensors and actuators.
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2.3.2 Open System Gateway Initiative

OSGi provides open specifications for service delivery into networked environ-

ments. Since it is based on Java, it is operating system independent. OSGi

basically consists of a network framework and a set of standard service defi-

nitions. The main role is played by the service gateway that coordinates the

interaction between the client and the service provider. The latter can be

either located within the same network (e.g., for home monitoring and au-

tomation) or spread over the Internet (e.g., for a remote alarm system, for

web multimedia streaming).

Network opera�ng system

Bundle

…

Network access

App App App App

Java Virtual Machine

Execu�on environment

Modules

Life cycle

Services

Figure 2.3: OSGi protocol stack.

Figure 2.3 shows the system protocol details: applications or components

are packed into bundles and delivered throughout the network. Each bun-

dle carries information about service interfaces, service implementation and

required resources. Therefore, the service provider copes with the packaging

and advertisement of bundles, while the client downloads and executes the

required bundles through the service gateway. Although OSGi was originally

designed for service gateways, now it is considered for application in a broad

variety of devices, e.g., set-top boxes, Cable/DSL modems, PCs as well as

mobile phones.
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The main strength of OSGi is the idea of centralizing the network man-

agement in the service gateway. However, this can also be a weakness since it

limits the system scalability and represents a single point of failure problem.

2.3.3 Java Intelligent Network Infrastructure

Jini defines a set of network architecture specifications for the implementation

of a distributed system. It allows for federating clients, services and the re-

sources required by those services. Jini is operating system independent but

Java-based since it is an evolution of the Java Remote Method Invocation

(RMI). It is also open and based on the TCP/IP protocol stack.

Network opera�ng system

…

Network access

App App App App

Java Virtual Machine

Lookup

Discovery / Join

Figure 2.4: Jini protocol stack.

According to Figure 2.4, the core of Jini is represented by the discovery,

join and lookup protocols. Furthermore, three main components can be de-

fined, i.e., the service, the client and the lookup service. A given service,

originated by a service provider, has to be registered in the lookup service

before being acquired and used by the client. The service provider stores a

set of service attributes into the lookup service using the discovery and join

protocols. When the client requests for a service, the lookup protocol moves

the service attributes from the lookup service to the client. Eventually, the
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client is able to exploit these service attributes to obtain the required service

directly from the service provider. In this perspective, the lookup service acts

both as a repository of service providers and as service trader for clients.

The flexibility of the discovery mechanism and the scalability offered by

the number of lookup services, which may increase according to the network

load, are the main strengths of Jini systems. Nevertheless, the transfer of

service attributes (i.e., Java bytecode) requires an amount of memory that is

not always available in small devices.

2.4 Survey of In-home Network Communication Technologies

Within the home, we can find several electronic devices that make use of

different media and protocols to communicate. In this perspective, we survey

the communication technologies that can be used for in-home networking. In

particular, we focus on wireline, wireless and PLC technologies.

2.4.1 Wireline

Wireline networking is typically represented by communication technologies

that exploit twisted pair (TP) cables and coax cables.

The communication over TP is used for the deployment of IP based LAN.

Cables are categorized by their cut-off frequency that determines the transmis-

sion data rate. With reference to this classification, we highlight cables Cat

5, Cat 5e with a 100 MHz cut-off frequency. These cables support the IEEE

802.3 standard family [16], also known as Ethernet. In particular, Fast Ether-

net with data rate up to 100 Mbps over Cat 5 cables is termed 100BASE-TX

(standardized by IEEE 802.3u), while Gigabit Ethernet with data rate up to

1 Gbps over Cat 5e is termed 1000BASE-T (standardized by IEEE 802.3ab).

For this reason, TP cables are also known as Ethernet cables. The Ethernet

coverage is up to 100 m both for Fast and Gigabit Ethernet using Cat 5/5e

unshielded twisted pair (UTP).

Besides LAN application, coax has been also proposed for delivering enter-

tainment and multimedia services within the home and in the access network.
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In 2007, the Multimedia over Coax Alliance [17] ratified the v1.0 and v2.0 spec-

ifications for communication over coax with data rate up to 250 Mbps and 1.4

Gbps, respectively. Recently, ITU-T has ratified the Gigabit Home Network

standard (G.hn [18, Chapter 7]) that specifies the PHY and MAC layers for in-

terconnection of devices using coax, TP, and power line communications. Its

PHY layer is based on orthogonal frequency division multiplexing (OFDM)

and offers data rate up to 1 Gbps, while the MAC layer is based on hybrid

time division multiple access (TDMA)/carrier sense multiple access (CSMA).

Eventually, the HomePNA technology provides specifications for home net-

working over existing coax cables and phone wires offering data rate up to 320

Mbps [19].

2.4.2 Wireless

There are several wireless technologies that can be used for in-home appli-

cations. Essentially, they can be grouped according to the offered data rate

and the coverage. Roughly speaking, devices that offer high data rate and

large coverage are developed for LAN applications, e.g., Wi-Fi. Whereas, de-

vices that offer high data rate and short coverage range are developed for

personal area network (PAN) applications, e.g., WiMedia Alliance compliant

devices [20]. Finally, devices that offer low data rate and a relatively large cov-

erage are developed for command and control applications, e.g., ZigBee [21].

All these wireless devices work in the frequency bands known as industrial,

scientific and medical (ISM).

In the following, we provide some more details about the wireless technolo-

gies.

High data rate wireless technologies (> 10 Mbit/s)

This category is defined by the standard family IEEE 802.11 [22] and are

known with the term Wi-Fi. They work in the frequency bands 2.4 GHz

(802.11b/g/n) or 5 GHz (802.11a/n). Their data rate equals 11 Mbps for

802.11b, 54 Mbps for 802.11a/g, and 600 Mbps for the 802.11n using multiple
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input multiple output (MIMO) techniques. Moreover, the indoor coverage is

up to 70 m [9].

All these technologies have the physical layer based on direct-sequence

spread spectrum (DSSS) or OFDM, while the MAC protocol based on CSMA

with collision avoidance (CSMA/CA) (see Table 2.1) that allows for coexis-

tence. Although WiFi and Ethernet have different PHY/MAC layers, they

converge towards the same logical link control (LLC) layer (defined in IEEE

802). Therefore, they exhibit the same interface towards the network layer

and thus they are interconnected.

Other high data rate wireless technologies are the ones based on ultra

wide band (UWB) modulations. Two examples are the WiMedia and the

WirelessHD [23] standard compliant devices. Both standards are based on

multi-band OFDM and are designed for short range communications (< 10 m).

WiMedia compliant devices work in the frequency band 3–10 GHz and reach

data rate up to 1 Gbps, whereas WirelessHD devices work in the frequency

band 57–66 GHz and reach data rate up to several Gbps.

Low data rate wireless technologies (< 3 Mbit/s)

Now we consider the most used low data rate wireless technologies, i.e., Z-

Wave, ZigBee, Wavenis [24] and Bluetooth [25]. These technologies have

been conceived with the scope of being embedded in small chips and require

low power consumption. In this perspective, Table 2.2 highlights that sim-

ple modulation techniques are used, e.g., binary FSK (BFSK) and binary

PSK (BPSK), whereas OFDM is disregarded since the computational cost

that negatively affects battery duration. On the other hand, in many cases,

spread spectrum techniques are taken into account, e.g., DSSS and frequency-

hopping spread spectrum (FHSS).

It is interesting to note that some of the listed technologies work in the

same frequency band and can coexist due to the medium access technique

usually based on CSMA/CA. However, they cannot exchange data due to the

lack of a defined convergent higher layer.
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Table 2.1: High data rate wireless technologies.

802.11a 802.11b 802.11g 802.11n WiMedia WirelessHD

Spectrum [GHz] 5 2.4 2.4 2.4/5 3.1–10.6 57–66

Modulation OFDM DSSS OFDM, DSSS OFDM OFDM OFDM

Data rate [Mbit/s] 54 11 54 150/600 1024 7 Gbps

Coverage [m] 35–120 35–140 38–140 70–250 - up to 10

Medium access CSMA/CA CSMA/CA CSMA/CA CSMA/CA CSMA/CA, TDMA TDMA

Table 2.2: Low data rate wireless technologies.

Z-Wave Bluetooth ZigBee Wavenis

Spectrum [GHz] 0.868/0.968/2.4 2.4 0.868/0.968/2.4 0.433/0.868/0.968/2.4

Modulation BFSK GFSK/DPSK, FHSS BPSK/QPSK, DSSS GFSK, FHSS

Data rate [kbit/s] 9.6–200 1–3 Mbit/s 20–250 4.8–0.100

Coverage [m] 30–100 10–100 10–100 200–1000

Medium access CSMA/CA L2CAP CSMA/CA, TDMA CSMA/CA

2
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2.4.3 Power Line Communication

Power line communication (PLC) makes use of the existing power line grid to

transmit data signals. There is a broad range of applications for which PLCs

have been or being used, e.g., remote metering, command and control of do-

motic systems, small office home office (SOHO), and recently, SG applications.

Essentially, the PLC devices can be grouped into two categories, i.e.,

BB-PLC and NB-PLC devices, according to the data rate that they can

achieve.

Broadband PLC Technologies

They have been developed with the aim of offering SOHO and multimedia

services. Essentially, BB-PLC devices work on the frequency band 2–30MHz,

and make use of advanced modulation techniques such as OFDM and bit-

loading to offer data rates in the order hundreds of Mbps. The most relevant

examples of commercial devices are the ones compliant with the HomePlug AV

(HPAV) [26] and the high definition PLC (HD-PLC) [18, Chapter 7] industry

standard. Their MAC layer is based on TDMA for high quality of service

traffic, and to CSMA/CA for best effort traffic. Furthermore, they exhibit

convergence towards Ethernet. In Table 2.3, we summarize the characteristics

of BB-PLC devices. It is interesting to note that both solutions, i.e., HPAV

and HD-PLC, have been used as baseline for the PHY layer specification of the

IEEE P1901 standard [6], released in December 2010. Moreover, HomePlug

GreenPHY (HPGP) version 1.1 has been recently ratified for SG applications

within the customer premises maintaining interoperability with HPAV and

P1901 [27].

Narrow Band PLC Technologies

They have been developed with the scope of offering indoor (home automation)

and outdoor (SG) command and control services. These technologies are cheap

and offer low data rates; some of them have been designed tens of years ago,

e.g, Universal Powerline Bus (UPB) and X10, exploiting a basic modulation
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technique (pulse-position modulation (PPM)) that facilitates high reliability

but poor data rates. The frequency bands dedicated from standardization

organizations to NB-PLC devices vary among the continents. In the EU, the

European Committee for Electrotechnical Standardization (CENELEC) issued

the standard EN 50065 that specifies four frequency bands for communications

over power line networks [18]. The band A (3–95 kHz) is reserved exclusively

to power utilities, the bands B (95–125 kHz) for any application, the band C

(125-140 kHz) for in-home networking, and the band D (140148.5 kHz) for

alarm and security systems. In US and Asia, the regulation is different: Federal

Communications Commission (FCC) and Association of Radio Industries and

Businesses (ARIB) allow PLC devices to work in the band from 3 kHz up to

490 kHz or 450 kHz, respectively.

In Table 2.4, we report the NB-PLC technologies developed for home au-

tomation applications. It is worth noting that most of NB-PLC technolo-

gies not open standard, e.g., LonWorks and HomePlug Command & Con-

trol (HPCC), thus the specifications are not detailed. For the interested

reader, more details can be found in [18, Chapter 7]. It is noticeable that

the listed technologies work in different frequency bands and adopt different

PHY and MAC layers. Therefore, these technologies can coexist but they

do not allow for interconnection. Furthermore, technologies with overlapping

operating bands can coexist exploiting MAC specific protocols. To this aim,

we highlight CENELEC band C, i.e., reserved for technologies that adopt the

CSMA protocol.

In this scenario, a relevant role is played by G3-PLC [28] and power line

intelligent metering evolution (PRIME) [29] solutions since they exhibit higher

reliability and data rates. In fact, nowadays they are playing a relevant role

for SG applications and therefore they have been ratified by ITU-T in [30]

and [31], respectively.

Regarding the standardization aspect, we notice that recently two working

groups, the IEEE P1901.2 [32] and the ITU-T G.hnem [33], have specified the

PHY and the MAC layers of NB-PLC solutions for communication below 500

kHz.
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Table 2.3: Broadband PLC technologies.

HPAV HPGP ITU-T G.hn HD-PLC IEEE P1901

Spectrum [MHz]
2–35 (1)

2–30
2–100 (BB)

4–30
2–28

2–70 (2) 100–200 (PB) 2–60

Modulation
OFDM OFDM, OFDM W-OFDM W-OFDM

Bit loading QPSK Bit loading Bit loading Bit loading

Data rate [Mbit/s] 200 (1)/500 (2) 10 1 Gbit/s 190 540

Medium access CSMA/CA, TDMA CSMA/CA CSMA/CA, TDMA CSMA/CA, TDMA CSMA/CA, TDMA

Table 2.4: Narrow band PLC technologies.

Insteon KNX X10 CEBus LonWorks

Spectrum CENELEC C CENELEC B CENELEC B
CENELEC C, CENELEC A, C,
FCC, ARIB FCC

Modulation BFSK Spread FSK PPM Spread spectrum BPSK

Data rate [kbit/s] 2.4 1.2 0.05 8.5 5.4

MAC - CSMA CSMA/CD CSMA/CD CSMA/CA, CSMA/CD

UPB HPCC G3-PLC PRIME ITU-T G.hnem

Spectrum
50 Hz CENELEC A, C, CENELEC A–D,

CENELEC A
CENELEC A–D,

60 Hz FCC, ARIB FCC FCC

Modulation PPM DCSK OFDM OFDM OFDM

Data rate [kbit/s] 0.48 7.5 240 122 1 MBit/s

MAC - CSMA/CA CSMA/CA CSMA/CA, TDMA CSMA/CA

2
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Chapter 2 - The Smart Home Network

2.5 Smart Home Network Architecture

To obtain convergence of network technologies and enable the delivery of a

broad set of in-home services, the general SH network architecture (depicted

in Figure 2.5) is envisioned.

Area beckbone

End 

node

Area 

Manager

Router

Smart Meter
End 

node
U lity

Smart Home 

Gateway

Energy Service 

Provider

Internet Service 

Provider

Figure 2.5: The Smart Home network architecture.

Nowadays, the most common technologies for home area network (HAN)

and LAN applications are based on Ethernet and/or WiFi. Although the

physical topology of Ethernet and WiFi is different, they exhibit the same

logical topology, i.e., the star topology. In fact, each network node is connected

to a central hub (a switch and an access point, respectively for Ethernet and

WiFi, with a point-to-point connection. On the other hand, PLC systems

exhibit both physical and logical bus topology.

Therefore, we adopt a tree topology – as a combination of bus and star

topologies – for the SH network architecture. The major benefit deriving from

the use of such a topology is its ability to be scalable, extensible, and rather

reliable. From the top down, the hierarchy is characterized by a smart home

gateway (SHG) (root), area manager (AM), router and, finally, end node (EN)

(leaf).

Interconnection among different communication technologies can be reached

through the definition of a shared common layer that is able to manage het-
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2.5 - Smart Home Network Architecture

erogeneous lower layers allowing network convergence. To this aim, we define

4 representative network devices, i.e., EN, router, AM and SHG. Since they

play a relevant role in achieving convergence, their behavior is detailed in the

following.

2.5.1 End Node

End nodes represent the leaves of the network and they directly interact with

the surrounding environment. According to Figure 2.5, ENs can be classified

according to Ethernet compliancy (diamond) or non-compliancy (green circle).

It is worth noting that, in general, home automation devices (e.g., sensors,

actuators and dimmers) use a proprietary communication protocol, usually

non-compliant with Ethernet. In fact, these devices exhibit simple circuitry

and poor computational capabilities in order to fulfill low power consumption

requirements. Therefore, they need to be virtualized within the Ethernet

network exploiting the router capabilities.

2.5.2 Router

Nodes compliant to a given standard, non Ethernet-based, are grouped in a

subnetwork. Each subnetwork is reachable through a Router (see Figure 2.5).

The main role of the Router is thus to virtualize each node of its subnetwork

within the Ethernet network. This leads to interconnectivity among the net-

work nodes. According to the architecture depicted in Figure 2.6, a router has

to:

• Associate a virtual address (e.g., Internet protocol (IP) address) to each

EN of the subnetwork.

• Get and store the information about each node, i.e., the kind of service

provided (e.g., remote sensing), the physical link quality and the set of

data that the node needs to exchange (e.g., the temperature or power

consumption measured by a sensor).

• Generate a list that specifies the address and the information of each

node of its subnetwork.
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• Relay frames from Ethernet networks to networks characterized by dif-

ferent communication protocols, and vice versa.

Ethernet-based Network Non Ethernet-based Network

PHY PHYPHY PHY

DLL DLLDLL DLL

Higher 

layers

Node A Node B

Relay

Router

Network NetworkNetwork Network

Frame

Higher 

layers
Frame

Figure 2.6: General router architecture and frame relaying.

It is important to highlight that the use of routers is beneficial for increasing

the network coverage. In fact, a subnetwork can be split in more subnetworks

in the case that some of its nodes are not in visibility. This concept will be

stressed later in Chapter 3 where network a network testbed is developed and

some performances are shown.

2.5.3 Area Manager

The SH network can be split into areas. Each area represents one or more

rooms and it is managed by an AM. Different AMs can manage the same class

of service, e.g., home networking, home automation, energy management, in

different ways. This enables to offer, in a simple way, a specific set of services

to a given area of the house. For instance, it is known that the kitchen is the

area of the house that needs the highest safety level, therefore, a Kitchen-AM

will offer ad-hoc services for the kitchen.

The AM retrieves the information regarding the ENs and their correspond-

ing subnetworks, thus it contains a data base with all the information regarding

its area. The AM is also envisioned to be responsible of the routing within
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2.5 - Smart Home Network Architecture

its area. In particular, each AM is able to forward frames taking into account

the energy efficiency, i.e., the selected paths are the ones that need the lowest

energy consumption to satisfy given quality of service (QoS) constraints (e.g.,

bit-rate, latency, delay). Finally, the AM, under request, can send its own

database to the SHG. By doing this, the SHG has a complete vision of the

network and can request the AMs to make actions as a consequence of an event

or a user request coming from another area of the house. It is worth noting

that the use of more AMs within the house also increases the fault tolerance

and the network extensibility. Finally, it is noticeable that an AM can be

a physical or a logical entity. For example, in the latter case, it could be a

software that runs in a platform that has an Ethernet connection.

2.5.4 Smart Home Gateway

The SHG plays the role of central coordinator and offers Internet connectivity.

This is to provide remote management/alert/monitoring of the network and

the delivery of web information and entertainment services. Note that the

Internet connectivity can be also exploited to connect the house to the ESP

for exchanging data about energy usage and tariffs. Furthermore, since the

network can integrate different communication technologies, it is also conceiv-

able to have connectivity between the smart meter, which is typically own by

the utility, and the SHG. It is worth noting that, although the integration

of SG and conventional home networking applications violates an accepted

paradigm, the isolation between the utility network, the energy and Internet

service providers can be handled by higher layer, e.g., exploiting middleware

functionalities.

On the other hand, the SHG communicates with the AMs connected to the

same backbone. The main features of the SHG can be summarized as follows:

• Addressing (if necessary): assign the IP address to the AMs, e.g., dy-

namic host configuration protocol (DHCP) server.

• Service lookup and publication: get the information about nodes from

the AMs, and consequently generate its own data base containing the
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information regarding all network nodes.

• Service maintenance: update its own data base following a network event.

• Routing (if necessary): set up a routing table among the AMs taking

into account the reliability or energy efficiency of the links.

• Home function control: ask the AMs to make an action as a consequence

of an event or an user request.

• Fault detection: detect and report failures of devices.

• Remote access: users can access and/or manage the overall network from

a remote position.

As discussed for the AMs, the routing path can be chosen according to a

tradeoff between energy consumption and QoS constraints satisfaction. An

example of such an approach is given by the IPv6 Routing Protocol for Low

power and lossy networks [34], recently approved by the Internet Engineering

Task Force (IETL).

2.6 Main Findings

Several communication technologies, suitable for in-home applications, are sur-

veyed in this chapter, focusing on wireline, wireless and PLC. Nevertheless,

they make use of different standards, protocols and even different media to

communicate, and consequently, they are not interoperable/interconnected

and/or can not even coexist. To this respect, in this chapter, we focus on

coexistence, interconnectivity and iteroperability issues as the major obstacles

to the realization of the SH where full penetration of heterogeneous services

is required. Then, we present a convergent network architecture in order to

achieve the interconnectivity. This is done through the definition of a of a

shared common layer that is able to manage heterogeneous lower layers al-

lowing network convergence. Furthermore, we discuss in detail the features of

main network devices.
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PLC Network Testbed for In-home Performance

Evaluation

The concept of the electrical grid conceived as an infrastructure that only de-

livers power to the end users is going to disappear. In the next years, the elec-

trical grid will be viewed as a smart grid (SG), namely, a distributed complex

large scale system that needs to smartly manage flows of electricity produced

by big or small plants. To fully exploit the SG potentialities, we think that it

is mandatory to extend the SG concept to the home. In our vision the smart

home (SH) network has to be developed to offer a broad variety of hetero-

geneous services that will improve the quality of life, yet addressing energy

consumption challenges, and in parallel providing the delivery of information

and entertainment services.

In this chapter, some of the functionalities of the SH network are evalu-

ated through an implementation of a network testbed. More precisely, we con-

sider a real environment where appliances have been plugged and unplugged.

In this scenario, we first show the performance – in terms of aggregate net-

work throughput (THR) and frame error rate (FER) – of two representative

NB-PLC solutions, i.e., one based on OFDM, and the other based on fre-

quency shift keying (FSK). The test results show that the performance of

the OFDM-based solution are very poor when working in the multi floor sce-

nario. To solve this problem, we implement an IP-based network prototype
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where BB-PLC devices are used to provide an Ethernet backbone that leads to

a significant improvement of the performances of the OFDM-based solution,

and further it offers connectivity between heterogeneous devices belonging to

different subnetworks.

3.1 Introduction

In the last years, we have assisted to an increased interest of the utility com-

panies towards the development of communication technologies that allow the

remote automatic meter management (AMM).

Besides the need of AMM technologies, nowadays the utility companies are

facing with new challenges such as [35]: the safe integration and the manage-

ment of renewable energy sources; the management of plug-in electric vehicles

that may cause a large load increase on sections of the grid; the management

of demand side and demand response allowing the customers to collaborate in

order to adapt the production and the delivery of electricity to achieve energy

efficiency and saving.

In the next years, the electrical grid will be viewed as a smart grid (SG),

namely, a distributed complex large scale system that needs to smartly manage

flows of electricity produced by big or small plants. Therefore, the management

of the SG will require a pervasive telecommunication infrastructure to allow

the entire supply chain of electricity, to benefit from a bidirectional, reliable,

short and long distance communication.

Industries and standardization organizations have proposed the use of NB-PLC

to support the requirements of the outdoor (bulk generation, transmission and

distribution domains) SG applications. On the other hand, BB-PLC solutions

are spreading to the in-home network market. This happens because the PLC

infrastructure is indeed pervasively deployed and its exploitation for commu-

nication purposes does not require any additional cost.

To fully exploit the SG potentialities, we think that it is mandatory to

extend the SG concept to the home, namely, the customers domain. In our

vision the SH network has to be developed to offer a broad variety of hetero-

geneous services that will improve the quality of life, yet addressing energy
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consumption challenges, and in parallel providing the delivery of information

and entertainment services. Nevertheless, the full deployment and exploita-

tion of a broad variety of electronic appliances and devices, e.g., TVs, HVACs,

PCs as well as sensors, detectors and actuators, is nowadays limited by coex-

istence and interconnection problems, hence, interoperability. In fact, a large

number of vendors has put on the market devices for in-home applications

that use different technology, standard, protocol, and even different media to

communicate. In our opinion this is the main obstacle to the growth of the

SH market.

In this chapter, we show some of the functionalities of the presented SH

solution through an implementation of a network testbed. More precisely,

we first show the performance - in terms of throughput and frame error rate

- obtained testing in a real environment, represented by a single floor (see

Figure 3.1a) and in a multi floor house (see Figure 3.1b), two representative

NB-PLC solutions, i.e., one based on OFDM, and the other based on FSK.

The test results show that the performance of the OFDM-based solution are

very poor when working in the multi floor scenario where channels cover longer

distances and exhibit higher attenuation than the single floor house. To solve

this problem, we implement an IP-based network prototype where BB-PLC

devices are used to provide an Ethernet backbone that leads to a significant

improvement of the performances of the OFDM-based solution, and further it

offers interconnectivity between heterogeneous devices belonging to different

subnetworks.

The reminder of the chapter is as follows. In Section 3.2, we describe

the testbed network architecture, together with the communication technolo-

gies and the performance metrics considered. The test campaign results are

reported in Section 3.3 where NB-PLC technologies are compared. Intercon-

nectivity and range extension are discussed in Section 3.4, and finally, the main

findings follow in Section 3.5.
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Outlet

Main panel

Circuit breaker

Power line grid

(a) Single floor house.

Outlet

Main panel

Circuit breaker

Power line grid

(b) Multi floor house.

Figure 3.1: Real environment for the network testbed.
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3.2 Testebed Network Architecture

In order to test some of the functionalities of the network architecture – in

particular, the interconnection between NB-PLC and BB-PLC devices and the

range extension – we have developed a network testbed consisting of different

areas connected through an Ethernet backbone based on HPAV technology.

Each area represents a given floor of the house and comprises NB-PLC/Ethernet

router and a NB-PLC end node (EN) (modem). The router functionalities have

been implemented by means of a network software running on a PC with net-

work adapters towards both Ethernet and NB-PLC. Note that, in the specific

scenario, the absence of a AM is not restrictive at all. In fact, the presence

of a SHG or AMs enable the interoperability, i.e., the management of SH ser-

vices, which is related to application layer, and can be later implemented, e.g.,

exploiting middlewares (see Section 2.3). Whereas, in this case, we are facing

with coexistence and interconnection problems that are required to develop

interoperability and enable the SH concept.

3.2.1 Metrics Definition for Performance Evaluation

The first test that we will consider is meant to compare FSK and OFDM based

NB-PLC solutions. To this end, we define two representative metrics, namely,

the aggregate network throughput (THR) and the frame error rate (FER).

Firstly, the THR is evaluated as

THR =

N
∑

u=1

THR(u) [bps] , (3.1)

where N is the number of network nodes and THR(u) is the average through-

put achieved by the u-th node, which can be evaluated both for PHY and

MAC layer as

THR
(u)
PHY = 8mN̂

(u)
RX [bps] , (3.2)

THR
(u)
MAC = 8nN̂

(u)
RX [bps] , (3.3)
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where N̂
(u)
RX is the number of correct received frames per second by the u-th

node, which are detected exploiting either the knowledge of the transmitted

frame or the frame check sequence (FCS) field. Furthermore, m and n re-

spectively represent the PHY payload length (data encapsulated at the PHY

layer) and the MAC payload length (data from higher layer) expressed in bytes.

Therefore, assuming that the number of nodes N goes to infinity, in Eq. 3.1

the THR goes to zero because all the nodes are simultaneously contending for

the medium access so that, in the end, there is not any correct received frame.

As it will be clarified in the following, we make use of a couple of NB-PLC

modems, i.e., a transmitter and a receiver. Therefore, Equation 3.1 is calcu-

lated for N = 2, whereas the contribution of transmitter to the cumulative

sum is equal to zero. In this perspective, the THR defined in Equation 3.1

corresponds to the average throughput of Equations 3.2 and 3.3.

Secondly, the FER can be obtained as

FER(u) =
N

(u)
RXtot −N

(u)
RX

N
(u)
RXtot

, (3.4)

where N
(u)
RXtot and N

(u)
RX are respectively the total number of frames and the

number of correct frames received by the u-th node. We notice that the FER

takes into account corrupted frames as well as missed frames. As it will be

clarified in the following, for each modem under test, we can set the total

number of transmitted frames (N
(u)
TX). Since we take into account a couple

of modems (u = 1, 2), the number of transmitted frames set into transmitter

corresponds to the total number of received frames by the receiver (N
(1)
TX =

N
(2)
RXtot).

3.2.2 FSK-based System Details

To test a FSK NB-PLC solution, we use the hardware platform developed by

ADD [36]. A general PHY frame encapsulation has the structure depicted in

Figure 3.2 where the 6 bytes long preamble is used for synchronization, whereas

the 2 bytes long header is used to define the type of frame. The following field
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PHY payload
m bytes

Preamble
6 bytes

Header
2 bytes

PHY frame

Postamble
2 bits

Figure 3.2: PHY frame format of a FSK-based system.

is represented by the payload. As shown in Figure 3.3, three different types

of payload are available according to the error correction mechanism, namely,

low, medium and high protection. Low protection (see Figure 3.3a) makes

use of error detection FCS but drops any kind of error correction. Medium

protection (see Figure 3.3b) introduces 6 bits of forward error correction (FEC)

for every data byte making the system capable of correcting 3 bit error burst

in a 14 bit block. High protection (see Figure 3.3c) exploits a convolutional

encoder with bit interleaving. Finally, two bits of postamble terminate the

frame. It is worth noting that each data byte in the payload is part of the

Data 1
1 byte

Data 2
1 byte

Data n
1 byte

... FCS
2 bytes

(a) Low protection: m = 8 (n+ 2) bits.

FCS 1
1 byte

Data 1
1 byte

Data 2
1 byte

FEC
6 bits

FEC
6 bits

... Data n
1 byte

FEC
6 bits

FEC
6 bits

FCS 2
1 byte

FEC
6 bits

(b) Medium protection: m = 14 (n+ 2) bits.

Convolutional(Data 1, Data 2, …, Data n, FCS)

(c) High protection: m = 16 (n+ 2) bits.

Figure 3.3: FSK-based payload structure for n data bytes.

higher layer frame, i.e., the MAC frame.

When showing numerical results, we set the hardware platform with the

following parameters. The central frequency is set to 72 kHz with a working

baud rate of 4800 bps. The two FSK tones are at frequency 69.6 kHz, and

74.4 kHz. Therefore, the system works in the CENELEC band A. Finally, we

choose to transmit the maximum amount of data bytes, i.e., n = 64. Conse-

quently, the payload length is set to m = {528, 924, 1056} bits for low, medium
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and high protection, respectively.

It is worth noting that FSK is also implemented in the KNX-PL132 stan-

dard [37] that is derived by the European Home Systems (EHS) protocol spec-

ifications [38].

3.2.3 OFDM-based System Details

To test an OFDM NB-PLC solution, we use a hardware platform developed

by Maxim. According to [39], in Figure 3.4 we show a general PHY frame.

The preamble is a multi symbol field used to perform carrier sense operations,

to enable control functions and to synchronize the receiver and the transmit-

ter. Then, the header field carries control information required to correctly

demodulate the received signal. The combination of header, destination ad-

dress (DA), source address (SA) and n data bytes is processed by a Reed-

Solomon (RS) encoder which takes into account the transmission mode, i.e.,

normal or robust. In fact, the PHY payload length (m) is lengthen by 16

or 8 bytes of RS parity, respectively for normal or robust mode transmission.

Moreover, in robust mode, besides RS encoder, there is a repetition code that

repeats each bit following the preamble 4 times. Consequently, the PHY frame

langth is the same for the two modalities since the repetition code. The PHY

frame is terminated by 2 bytes of FCS for error detection purposes. The length

of data is set to n = 97 bytes for the normal mode (m = 113 bytes), and n = 8

bytes for the robust one (m = 16 bytes).

Data
n bytes

Preamble
variable

Header
4 bytes

PHY frame

FCS
2 bytes

RS parity
8/16 bytes

PHY payload

m bytes

DA
6 bytes

SA
6 bytes

Figure 3.4: PHY frame format of an OFDM-based system.

The system works in the frequency band 32–95 kHz (CENELEC band A)

and its specification are detailed in Table 3.1.

It is worth noting that the hardware platform tested implements part of the

PHY and the MAC layer specifications taken from G3-PLC standard [28, 40].
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Table 3.1: OFDM-based system specifications

Number of FFT points (NFFT ) 256

Number of modulated carriers (Nc) 14

Number of overlapped samples (No) 8

Number of cyclic prefix samples (NCP ) 60

Modulation DBPSK, DQPSK

Sampling frequency (fs)[MHz] 0.4

Number of preamble symbols (Npre) 9.5

3.3 FSK vs. OFDM

In order to compare the NB-PLC solutions above described, we performed two

trial campaigns connecting, at each time, a couple of modems to two power

sockets within a house.

The first campaign took place in a single floor house. Whereas, the second

took place in a three-floor house, whose electricity is distributed from the

main panel (MP) to each floor through a floor circuit breaker (CB) located

at the MP. In the latter case, we considered either the transmission between

outlets belonging to the same floor or between outlets belonging to different

floors. Moreover, we considered a non-stationary scenario where appliances

have been plugged and unplugged, e.g., television, washing machine, battery

charger, fluorescent lamps, fridge, and so on.

During the test campaign, we considered different types of communication

modes. More in details, for the FSK-based system we used low and high robust

transmission, while for the OFDM-based system, we used normal and robust

transmission modes.

Figure 3.5a and Figure 3.5b respectively show the complementary CDF

(CCDF) of the throughput, and cumulative distribution function (CDF) of

the FER for the FSK-based solution. Although not shown, we notice that no

corrupted or lost frames have been observed using the FSK solution in the

single floor house. Therefore, the throughput only depends on the modality

by which the frames have been transmitted. The behavior changes when con-
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sidering the multi floor house. As we can see, both the THR and the FER

are much more degraded for channels belonging to the multi floor house. This

is simply explainable observing that channels associated to multi floor houses

cover in average larger distances than those in single floor houses, and they

experience higher attenuation. We note the same behavior for OFDM (Fig-

ures 3.6a, and 3.6b).

Now, in Table 3.2, we report the averageMAC throughput and FER values.

From this table and Figures 3.5, and 3.6, we note that, in general, OFDM

allows for higher peak or average throughput than FSK. However, it has also to

be said that, FSK offers better robustness, where with robustness we mean the

highest probable throughput value. For example, considering the multi floor

case and FSK low/OFDM normal transmission modes, with probability equal

to 0.9, FSK and OFDM respectively achieve a throughput of 2.079 kbit/s,

and 0.055 kbit/s. Nevertheless, the choice between FSK and OFDM has to be

done in conjunction with the required service.

Table 3.2: Average values for MAC throughput and FER.

THRMAC [kbit/s] FER

Single Floor Multi Floor Single Floor Multi Floor

FSK low 2.3098 2.2659 0 0.0190

FSK high 1.5208 1.5117 0 0.0060

OFDM normal 18.909 3.4345 0.0033 0.7856

OFDM robust 1.3198 0.3992 0.0010 0.6646

3.4 Interconnectivity and Range Extension

We now focus on the interconnection between NB-PLC and BB-PLC devices.

Looking at Figures 3.6a and 3.6b, we see that OFDM shows very poor per-

formance in terms of THR and FER. Analyzing the data, we notice that the

highest performance degradation occurs during communication across different

floors due to larger distances covered by PLC channels.

To cope with this problem, we introduce the testbed architecture, accord-

ing to Figure 3.7. In details, the router is characterized by network adapters
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Figure 3.5: FSK-based system performances within single and multi floor
houses.
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Figure 3.6: OFDM-based system performances within single and multi floor
houses.
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both towards NB-PLC, i.e., OFDM technology, and BB-PLC, i.e., HPAV tech-

nology, while the core unit is represented by a PC running ad-hoc network

software. It is worth noting that the HPAV backbone can be considered as an

Ethernet backbone since HPAV modems exhibit the Ethernet interface. There-

fore, the use of the HPAV modems allows to extend the Ethernet backbone

through different floors, while router functionalities provide the interconnec-

tion between OFDM and HPAV. In this perspective, the communications

between OFDM modems (end node and router) takes place on the same floor

(where PLC cables are shorter), while the communication across different floors

(where PLC cables are longer) is handled by the Ethernet backbone. Hence,

the frame goes from source to destination node throughout the logical path

depicted in Figure 3.7 (red dotted line).

Main panel

Circuit breaker

Power line grid

Floor A Floor B

HPAV modem

OFDM modem

Router A Router B

Logical path

Figure 3.7: Testbed architecture for interconnectivity and range extension.

In Figures 3.8a and 3.8b are depicted the CCDF of the THR and the CDF

of the FER (for the PHY layer), obtained using the HPAV extension. It is

worth noting that there is a huge performance improvement.
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Figure 3.8: OFDM-based system performances within multi floor house with
HPAV extension.
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3.5 Main Findings

In this chapter, we have tested, in single and multi floor houses, two represen-

tative NB-PLC devices, i.e., one based on FSK and the other based on OFDM.

Test results have shown that, although OFDM, in general, allows for higher

peak throughput than FSK, it exhibits poor performance in terms of FER,

thus throughput, when working in the multi-floor house. This issue has been

solved developing a network testbed where BB-PLC devices are used to pro-

vide an Ethernet backbone that allows for (i) connectivity between NB-PLC

and BB-PLC devices, and (ii) range extension.
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Chapter 4

Enhancements of G3-PLC Technology for Smart

Home Applications

To enable the smart grid (SG) concept, it is fundamental to consider the

in-home/building context where, besides the conventional home networking

services, home automation and smart energy management services have to be

offered. Power line communication (PLC) is a key technology in this con-

text since it exploits the power line grid that is pervasively deployed within

houses/buildings. Thus, no new wire is needed, which reduces deployment

costs.

In this chapter, we consider the in-home/building scenario, for which we

apply a convergent network architecture to enhance the performance of the

narrow band G3-PLC technology through its integration into an Ethernet net-

work. To this end, we define the protocols characterizing the network modules,

namely, switches and routers, which allow for integrating the G3-PLC with

Ethernet devices. Since Ethernet represents a convergent standard for many

communication devices, by adding this functionality to G3-PLC, interconnec-

tivity with other heterogeneous nodes can be offered. Furthermore, since the

G3-PLC medium access control layer is based on a carrier sense multiple ac-

cess (CSMA) scheme, its performance decreases when the number of network

nodes that contend for the channel increases. Therefore, we evaluate the net-

work performance when a time division multiple access (TDMA) scheme is
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adopted instead of CSMA. The proposed convergent network architecture has

been implemented in the OMNeT++ network simulator.

4.1 Introduction

In the near future, the power grid needs to become a distributed large scale

system that has to smartly manage flows of electricity produced by big or

small plants, i.e., a SG. Demand side and demand response mechanisms have

to be implemented, so that consumers and producers will actively collaborate

in the use and delivery of energy [2, 3].

In this perspective, an important role is played by the communication

technologies, which can enable, the smart home concept, i.e., the penetration

of the SG within the home/building context, by means of smart management

and monitoring of household appliances, control of local renewable energy

plants (e.g., photovoltaic generators), monitoring of electric vehicles charge,

etc..

Several NB-PLC solutions and standards have been developed with the

SG concept in mind, e.g., the PRIME [29] and the G3-PLC [28] technologies

for smart metering applications, the new IEEE P1901.2 and ITU-T Ghnem

standard for SG applications [41]. However, we highlight that so far, only

PRIME and G3-PLC solutions have been largely used, and in particular, for

AMR.

In this chapter, we consider the G3-PLC solution, for which we propose

enhancements at the medium access control (MAC) sub-layer to allow the im-

plementation of SG applications that could potentially require higher data rate

than AMR. The choice of considering the G3-PLC solution is motivated by the

two following reasons. Firstly, it has been used as baseline technology for the

development of the IEEE P1901.2 and ITU-T G.hnem standard [41]. Secondly,

through field trial tests (see Chapeter 3), we found that the performance of

NB-PLC may be poor in large houses where the signal is strongly attenuated

because it spans large distances and crosses different circuit breakers (CBs),

e.g., in multi-floor houses.

The first enhancement that we propose is a convergent network consisting
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of different network devices, i.e., end nodes, routers and switches, to integrate

G3-PLC with Ethernet devices. This, in turn, leads to an increased network

coverage and improves the network throughput.

The second enhancement that we propose is the adoption of a contention-

free MAC scheme based on time division multiple access (TDMA), instead of

the CSMA with collision avoidance (CSMA/CA) scheme specified by G3-PLC.

In particular, we implement an optimized version of the beacon-enabled mode

of the IEEE 802.15.4 standard [42]. The reason behind the use of a TDMA

scheme is that the performance of CSMA/CA decreases with an increasing

number of network nodes.

The convergent network performance together with the TDMA scheme

are evaluated through the implementation in the OMNeT++ network simu-

lator [43]. Numerical results show considerable performance improvements in

different network configurations.

The remainder of the chapter is as follows. In Section 4.2, we summarize

the main characteristics of the OMNeT++ network simulator. Then, in Sec-

tion 4.3 we discuss the G3-PLC and Ethernet characteristics. The convergent

network implementation and its main devices are discussed in Section 4.4,

while simulation setup and preliminary results are presented in Section 4.5.

The TDMA optimization is presented in Section 4.6 together with extensive

simulation results. Finally, in Section 4.7, we draw the main findings.

4.2 OMNeT++ Network Simulator

Network simulation is one of the most predominant evaluation methodologies

in the field of computer networks. It allows to model a given computer network

by specifying both the behavior of network nodes and the communication

channel characteristics. Moreover, a simulation software platform allows for:

• Overcome problems related to hardware platforms.

• Integrate new communication technologies, architectures and protocols.

• Evaluate the network performance in peculiar conditions (e.g., varying

the number of nodes).
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• Analyze potentialities and boundary conditions of the network.

Most available network simulation toolkits are based on the paradigm of

discrete event-based simulation (DES) [44]. The key concept of DES is repre-

sented by network nodes that trigger events. In particular, events are messages

characterized by an execution time, and sent from nodes both to other nodes

and to themselves. The simulator keeps trace of events maintaining a queue

where events are sorted according to the scheduled execution time. The final

simulation is performed by successively processing and executing the events in

the queue.

OMNeT++ is an object-oriented modular DES framework. Differently

from other network simulators, e.g., ns-2 [45], ns-3 [46], JiST [47], etc., OM-

NeT++ is not a real network simulator, but rather provides infrastructure

and tools for writing simulations. However, according to [48], it is capable of

carrying out large-scale network simulations in an efficient way, representing a

smart choice for the SH implementation. Moreover, with its INET package [49],

it provides a comprehensive collection of models for networking technologies,

standards and protocols.

The basic idea of OMNeT++ is a component architecture for simulation

models. Models are assembled from reusable components calledmodules which

communicate with message passing. According to Figure 4.1, different module

types are considered. The basic module is termed simple module (solid line)

and its behavior is defined through C++ language exploiting the simulation

class library of the same name. Simple modules can be grouped into compound

modules (dotted line) and so forth. Finally, the top hierarchical level is repre-

sented by the network, which is special compound module without gates to the

external world. It is worth noting that when a module type is used as a build-

ing block, there is no distinction whether it is a simple or a compound module.

This allows the user to transparently split a module into several simple mod-

ules within a compound module, or, vice versa, concentrate the functionalities

of a compound module in one simple module. Modules exchange messages

typically through gates (blue box), but it is also allowed to send messages

directly to the destination modules. Gates are the input and output interfaces
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Simple module Simple module

Compound module

Simple module

Network

Figure 4.1: General model structure in OMNeT++.

of modules: messages are sent out through output gates and arrive through

input gates. An input and an output gate can be linked with a connection

(arrow). Connections are created within a single level of module hierarchy,

i.e., within a compound module, corresponding gates of two submodules, or a

gate of one submodule and a gate of the compound module can be connected.

Connections spanning across hierarchy levels are not permitted since it would

hinder reusability of modules. Modules can have parameters that are used to

pass configuration data and to define model topology. Furthermore, connec-

tion can be characterized by properties such as propagation delay, data rate

and bit error rate.

The structure of the model is defined by the user in network descrip-

tion (NED) language. NED allows simple module declarations, compound

module definitions and network definitions. Simple module declaration de-

scribes the interface (gates) of the simple module and its parameters. Com-

pound module definition consists of the definition of inner simple modules and

their interconnection, in addition to the declaration of the external interface

(gates) and parameters. Eventually, network definition is represented by the

declaration of compound and simple modules that qualify the overall network,

and the definition of parameters that have to be passed to modules. Hence,

NED files also define the model topology.

Since the separation of different aspects of a simulation has to be achieved,

model behavior is captured in C++ files, while model topology and parame-

ters are defined by the NED files. However, in order to evaluate the simulation

behavior with different inputs, the values assigned to network parameters may
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differ according to different simulation runs. Therefore, these values may nei-

ther be assigned to the behavior (C++ code) nor the topology (NED files). To

this aim, initialization (INI) files are used to store values of network parameters

and specify a set of different values run by run.

4.3 Communication Technologies

In this section, we describe the communication technologies that have been

take into account to realize the SH network simulation. In particular we focus

on G3-PLC technology, i.e., the standardized version of with the OFDM-based

system described in Section 3.2.3, and on Ethernet technology. Further details

are discussed in the following.

4.3.1 G3-PLC

G3-PLC is thought to facilitate high-speed, highly-reliable, long-range com-

munication over the existing power line grid for grid asset management, meter

management, in-home energy display/management, electric vehicle charging,

lighting automation, factory automation. It has been used as the basis and it is

part of the IEEE P1901.2 [32] standard and the ITU-T G.hnem [33] standard

for SG applications.

Its PHY and MAC layers specifications were completed in 2009 and are

briefly discussed in the following.

According to [50], the G3-PLC technology has been designed to support

CENELEC bands in the frequency range 3–148.5 kHz and FCC band in the

frequencies range 9–490 kHz. In detail, CENELEC specifies four frequency

bands: the band A (3–95 kHz) that is reserved exclusively to power utili-

ties, the band B (95–125 kHz) can be used for any application, the band

C (125–140 kHz) is dedicated to in-home networking systems, the band D

(140–148.5 kHz) is reserved to alarm and security systems. Besides this clas-

sification, G3-PLC is able to work in a combination of two or more CENELEC

bands, i.e., BC, BCD and BD.

The block diagram of the G3-PLC transceiver, depicted in Figure 4.2,
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highlights the use of pulse shaped OFDM (PS-OFDM) technique combined
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Figure 4.2: Block diagram of G3-PLC transceiver [28].

with a differential BPSK (DBPSK) or differential QPSK (DQPSK) modula-

tion scheme where the phases of carriers in the adjacent symbol are taken

as reference for detecting the phases of the carriers in the current symbol.

Two different transmission modes are allowed, namely, normal and robust.

In normal mode, FEC encoding (thus decoding) is composed of a RS and a

convolutional encoder, while, in robust mode, beside RS and convolutional
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encoding, there is a repetition code (RC) that repeats each bit following the

preamble 4 times, making the system more robust to channel impairments.

It is worth noting that normal and robust transmission mode are related to

DBPSK modulation, while DQPSK always performs in normal mode.

The PHY frame format, depicted in Figure 4.3 (bottom), is characterized

by (i) the preamble, which is a multi symbol field used to perform carrier

sense operations, to enable control functions and to synchronize the receiver

and the transmitter, (ii) the frame control header (FCH), which carries control

information required to correctly demodulate the received signal, and (iii) the

PHY payload, namely, the PHY service data unit (PSDU). It is worth noting

that the PHY payload length (n) depends on the transmission mode, i.e.,

normal and robust.
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Figure 4.3: General PHY and MAC frame format for G3-PLC technology.

When showing simulation results, we consider G3-PLC working in the

CENELEC band A1. In this case, it uses PS-OFDM with a raised cosine

window, and 36 out of 256 sub-channels are used in the 35.9–90.6 kHz fre-

quency band. Furthermore, we assume that each PHY frame is composed of

40 PS-OFDM symbols, each carrying data modulated with DQPSK. This as-

sumption respectively leads to 163 bytes of data and 16 RS parity check bytes.

Consequently, the maximum achievable bit-rates is 30.4 kbps. Table 4.1 re-

ports other reference PHY layer parameters for the CENELEC band A.

According to [40], the MAC sub-layer is based on the IEEE 802.15.4–

2006 specifications for low-rate wireless personal area network (WPAN) [42].

1Despite the fact that CENELEC-A is generally not used for home networking, perfor-
mance is not significantly affected by the operating band.
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Basically, the channel access method is based on CSMA/CA mechanism and a

random backoff time. The general MAC frame format, depicted in Figure 4.3

(top), is substantially based on the 802.15.4–2006 specifications, except for the

segment control field, which is defined in [40] and is used for tone mapping,

contention handling and segmentation purposes.

When showing simulation results, we assume a minimum MAC overhead

of 8 bytes. Therefore, according to the amount of data bytes defined in the

PHY, the maximum MAC payload is 155 bytes in normal mode. For the sake

of implementation simplicity, we assume that the transmission does not wait

for any acknowledge (ACK) frame reception. Table 4.1 reports other MAC

layer reference parameters.

Table 4.1: G3-PLC reference parameters.

Number of IFFT/FFT points (M) 256
Number of modulated carriers (Nc) 36

First modulated carrier frequency (f1) [kHz] 35.938
Last modulated carrier frequency (f2) [kHz] 90.625

Available bandwidth (f2 − f1) [kHz] 54.688
Sampling frequency (fs) [MHz] 0.4
Frequency spacing(fs/M) [kHz] 1.5625

Number of overlapped samples (No) 8
Number of cyclic prefix samples (NCP ) 30

Number of FCH symbols (NFCH ) 13
Number of preamble symbols (Npre) 9.5

Preamble duration [ms] 6.08
PS-OFDM symbol duration [µs] 695

Number of PS-OFDM symbols per PHY frame (Ns) 40
PHY frame duration [ms] 42.9

PSDU dimension (m) [bytes] 179
MAC overhead [bytes] 8

MAC payload dimension (n) [bytes] 155
Maximum PHY data rate [kbps] 30.4

4.3.2 Ethernet

Nowadays, Ethernet, namely IEEE 802.3, is the most widely deployed technol-

ogy for HAN and LAN. As mentioned in Section 2.4, IEEE 802.3 specifications

offer a convergent LLC sub-layer (defined in IEEE 802) for many different PHY

layers and MAC sub-layers, e.g., coax, twisted pair as well as optical fiber and

wireless. The Ethernet frame format is depicted in Figure 4.4. The preamble,
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Figure 4.4: Ethernet frame format.

which is used for synchronization purposes, is followed by the starting frame

delimiter (SFD). Then, destination service access point (DSAP) and source

service access point (SSAP) respectively represent the destination and source

MAC address. Since the frame payload can vary between 0 and 1500 bytes,

there is padding field in order to ensure the minimum PHY payload length,

i.e., 64 bytes. The frame is ended by a FCS for error detection.

Although Ethernet provides specifications for different communication me-

dia, when showing simulation results we consider the Fast Ethernet 100BASE-

TX over Cat 5 cables (IEEE 802.3u) since it is the most deployed in today’s

HANs. Furthermore, we assume the full duplex operation mode: the net-

work is switched thus the connections are handled point-to-point and cannot

be shared by multiple devices. Therefore, the full duplex mode eliminates

CSMA with collision detection (CSMA/CD) mechanisms because there is no

need to determine whether the connection is already being used. However,

is mandatory to consider an additional network device, namely, the switch,

that enables the full duplex point-to-point connection among Ethernet nodes.

Further details about 100BASE-TX are listed in Table 4.2.

Table 4.2: 100BASE-TX reference parameters.

PHY data rate [Mbps] 100
Bit time [ns] 10

Minimum PHY payload dimension [byes] 64
Maximum PHY payload dimension [bytes] 1518

Minimum PHY frame duration [µs] 5.76
Maximum PHY frame duration [µs] 121.44
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4.4 Convergent Network Implementation

In order to reproduce the testbed presented in Chapter 3, we have to inte-

grate an Ethernet network with a G3-PLC network. As previously mentioned,

modern Ethernet networks are switched, hence, they exhibit a star topology.

On the other hand, G3-PLC networks exhibit a bus topology. Therefore, the

resulting network architecture can be thought as a combination of bus and

star, i.e., a tree topology (see Figure 4.5).

Switch

Ethernet cat5 Power line grid

End 

node

Router

Figure 4.5: Convergent network architecture.

4.4.1 Network Devices

In this perspective, the integration between Ethernet and G3-PLC is achieved

by means of the definition and the implementation of a shared common layer

placed on top of DLL. In particular, a relevant role in achieving convergence

and is played by the router and the switch as described in the following.

55



Chapter 4 - Enhancements of G3-PLC Technology for Smart Home Applications

End Node

They represent the devices of the network that directly interact with the sur-

rounding environment, e.g., sensors, actuators, switches, meters and so on.

These nodes are grouped into subnetworks according to the same communi-

cation technology, i.e., G3-PLC. From a logical point of view, the end nodes

can be all characterized by the same building blocks, i.e., a traffic generator

(which is responsible of data packets generation) and the network adapter.

The network adapter comprises a PHY, a MAC, and a buffer of data packets

coming from the traffic generator.

Router

Since G3-PLC does not provide any specification for the integration in a

switched Ethernet network, we need a network device that groups G3-PLC

nodes into a subnetwork and integrates the subnetwork with the rest of the

Ethernet network. To do that, we define a router that offers network adapters

towards both Ethernet and G3-PLC. Beside the network adapters, the Router

has a routing module that is responsible of translating and forwarding packets

from one network adapter to the other and vice versa: this module is respon-

sible of interconnectivity between Ethernet and G3-PLC. It is worth noting

that since the maximum allowed G3-PLC PHY frame size is 251 bytes (corre-

sponding to a payload of 235 data bytes both in DQPSK and DBPSK normal

mode [28]), the router encapsulates each G3-PLC frame into one Ethernet

frame, whose maximum frame payload dimension is 1500 bytes. On the other

side, Ethernet frames exceeding 251 bytes are fragmented by the router in or-

der to fulfill G3-PLC constraints. However, this assumption is not necessarily

optimal.

As depicted in Figure 4.6, the routing module keeps trace of packets re-

ceived from its subnetwork nodes, and it generates a forwarding table with

source address, insertion time, and link quality. In this perspective, the router

dynamically learns about the existence of nodes during reception of packets

and modifies its table updating the link quality or removing aged entries, ac-
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cording to the insertion time. It is worth noting that a given subnetwork

can be managed by two (or more) routers in order to ensure a more reliable

communication on harsh power line channels, or equally, to increase the net-

work coverage. Furthermore, in order to prevent loops, the router is able to

recognize and discard packets directly arrived from other routers.

Switch

The switch is a well-known network device. As depicted in Figure 4.7, the

switch has been modified in order to work seamlessly with the routers. In

particular, it is able to build and update a forwarding table exploiting nodes

information harvested by each router. A forwarding table entry is composed by

source address, insertion time, link quality and arrival port number. Therefore,

the switch compares the information carried by a packet with the correspon-

dent table entries and forwards the packet to the correct port (or broadcast if

the destination address has no correspondence in the table). In this case, the

insertion time parameter is exploited to remove aged entries from the table

and thus increasing the system fault tolerance. Again, the switch is able to

prevent packet loops. We also point out that since link quality is updated

periodically, the switch is able to dynamically handle the network changes. It

is now clear that the combination of the router and switch procedures enables

the integration of heterogeneous communication technologies leading to a con-

vergent network. Moreover, this combination provides the basis for satisfying

quality of service (QoS) constraints.

It should be finally noted that the integration of G3-PLC with Ethernet

easily allows for integrating the G3-PLC technology in IP networks.

4.5 Simulation Setup and Preliminary Results

In order to quantify the network performances, we exploit the representative

metric defined in Equation 3.1, namely, the aggregate network throughput

(THR). To this respect, we notice that it has been evaluated at MAC layer,

thus considering the Equation 3.3. Moreover, in order to model the power
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line channel characteristics in the OMNeT++ implementation, we make use

of FER obtained during field test campaign performed with the testbed.

Figure 4.8 shows the CDF of FER for normal and robust mode for single

and multi floor house. From the obtained results, we computed the distribution

of the FER. In particular, for the single floor house, the FER can be assumed to

be exponentially distributed with mean equal to 0.0024 and 0.001, respectively

for normal DQPSK and robust DBPSK mode. Regarding the multi floor

house, we model the FER as uniformly distributed in the range (0.6429, 1) or

(0.4615, 1), respectively for normal DQPSK and robust DBPSK mode. The

obtained statistics are depicted in Figure 4.8 (red dotted lines). As regards
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Figure 4.8: CDF of the measured FER for G3-PLC technology. The distribu-
tion fitting is also shown.

Ethernet network, we assume cat5 cables ideal from the FER point of view,

while the propagation delay is assumed 500 ns.

It is important to note that in the case of a multi floor house, the G3-

PLC network can be naturally split into several subnetworks, one for each

floor. The subnetworks can afterwards be interconnected through Ethernet.

The same architecture can be used in large buildings that may already have a

wired Ethernet deployment.
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Figure 4.9: Simulated THR for different network configurations.

We now turn our attention to the convergent network behavior. To do

that, we consider the THR in saturation condition, which is defined as the

limit reached by the THR when the offered load increases, and it represents

the maximum load that the system can carry [51]. In saturation conditions,

each node has immediately a packet available for transmission, after the com-

pletion of each successful transmission. We build the simulation scenario using

from 6 up to 60 G3-PLC nodes and we evaluate the THR when no routers are

introduced, and when two and three routers – e.g., one per each floor, – are

considered. The traffic is point-to-point and is generated such as the destina-

tion address belongs to a node inside the same subnetwork or to a different

subnetworks with respect to source node (when routers are present). In this

perspective the traffic model can be considered peer-to-peer. Figure 4.9 shows

the THR. As we can see, the introduction of 2 and 3 routers substantially

improves the performance. It is worth noting that the THR improvements

directly translates in a coverage increase.
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4.6 Further Improvements Using Time Division Multiple Access

Despite the THR improvements related to the introduction of routers, the bot-

tleneck of the network is represented by the degradation of the performance

with the increasing number of G3-PLC nodes within each subnetwork (see Fig-

ure 4.9). To prevent this occurrence, we envision the G3-PLC communication

technology proposing a different channel access method that provides a higher

QoS, namely, time division multiple access (TDMA). To do this, we implement

the beacon-enabled mode of the IEEE 802.15.4–2006 specifications [42]. It de-

fines a superframe structure as depicted in Figure 4.10. Each superframe is de-

GTS GTS Inactive

Beacon Beacon

CAP CFP

SD = aBaseSuperframeDuration*2SO symbols

(Active)

BI = aBaseSuperframeDuration*2BO  symbols

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 4.10: An example of superframe structure [42].

fined by the beacon order (BO), it lasts BI = aBaseSuperframeDuration ∗

2BO OFDM symbols, and it is characterized by an active and an inactive

part. The active part, which is defined by the superframe order (SO), lasts

SD = aBaseSuperframeDuration ∗ 2SO OFDM symbols, and it consists

of a contention access period (CAP) and a contention-free period (CFP).

The BO, and the SO values are related according to 0 6 SO 6 BO 6 14.

In the CAP, the channel access is based on CSMA/CA, while during the

CFP, it is based on TDMA. The active portion of each superframe is di-

vided into a number of time slots equally spaced, whose duration is given by

aBaseSlotDuration = Ns+aInterFrameSpacing, where Ns is the number of

OFDM symbols in a G3-PLC frame (see Table 4.1), and aInterFrameSpacing
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is the interframe space within two time slots. The CFP grows or shrinks dy-

namically fulfilling the minimum CAP length of 440 OFDM symbols. We

denote with NTStot the number of time slots present in the CFP. It is worth

noting that the beacon frame, which is periodically sent by a WPAN coordina-

tor for synchronization purposes, can be replaced by the synchronization with

the mains cycle.

Table 4.3 reports the values of the parameters used for the beacon-enabled

mode simulations.

Table 4.3: Superframe parameters and values.

Parameters Value

SO = BO 1, 2, 5
aBaseSuperframeDuration aBaseSlotDuration∗

aNumSuperframeSlots
aBaseSlotDuration Ns + aInterFrameSpacing
aInterFrameSpacing 10

aNumSuperframeSlots 16

Now, in order to maximize the THR, each subnetwork coordinator, repre-

sented by a router, assigns a guaranteed time slot (GTS) – which lasts one or

more time slots, – to each node that wants to transmit, by solving the following

optimization problem

max
NTS

N
∑

u=1

N
(u)
TS

NTStot

THR(u)

s.t.

N
∑

u=1

N
(u)
TS

NTStot

= 1,

N
(u)
TS

NTStot

THR(u) ≥ p(u)THR(u) ∀u = 1, . . . , N, (4.1)

where N is the number of nodes, N
(u)
TS is the number of time slots assigned

to node u, and NTS =
[

N
(1)
TS , N

(2)
TS , . . . , N

(N)
TS

]

. Furthermore, THR(u) is con-

sidered as the MAC throughput of node u in bps, according to Equation 3.3.

It can also be obtained as THR(u) = 8n
(

1− FER(u)
)

/Ts, where Ts denotes

the time slot duration in seconds and FER(u) is according to Equation 3.4.
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p(u) ∈ [0, 1] are QoS coefficients, each indicates the percentage of the through-

put that the u-th node has to achieve w.r.t. the one that it would achieve in

the corresponding single user scenario. Finally, the condition in the second

line of (6.1) forces all the time slots in a CFP to be used.

Problem (6.1) is an integer linear programming problem. Therefore, it is,

in general, NP hard. To simplify the problem, we solve (6.1) using linear pro-

gramming (LP) and we round the obtained coefficients to the lower closest

integer value. Clearly, there could be cases where the number of slots assigned

to one or more nodes is zero. In these cases, the correspondent nodes are

deferred to transmit in the CAP. Furthermore, when some time slots are not

occupied as result of the rounding of the coefficients, these will be assigned to

the nodes that have the highest throughput, leaving the CAP free of trans-

missions. Finally, we assume
∑N

u=1 p
(u) ≤ 1. The latter assures that the LP

always give a feasible solution if N ≤ NTStot
.

It is easy to prove (see Appendix 8.1) that when
∑N

u=1 p
(u) = 1, e.g.,

p(u) = 1/N , the optimal solution to (6.1) can be found imposing the Karush

Kuhn Tucker (KKT) conditions [52] and is given by N
(u)
TS = NTStot/N, ∀u =

1, . . . , N . In the following, we assume the last condition holds true.

Now, in Figure 4.11, we show the THR, when no router is present, obtained

using CSMA/CA and the proposed TDMA with FER(u) ∼ U (0.6429, 1) (top)

and FER(u) ∼ E (0.0024) (bottom), respectively corresponding to multi and

single floor hose. The results are shown for SO = BO = {1, 2, 5}, namely

for superframe duration of {1.72, 3.43, 27.47}s, or equally for a number of

allocable GTS equal to {23, 55, 503}. We notice that we have not found any

substantial improvement for value of SO greater than 5.

Figure 4.12 and Figure 4.13 show the comparison between TDMA and

CSMA/CA when 2 and 3 routers are used. In this case, it is assumed FER(u) ∼

E (0.0024).

From Figs. 4.11, 4.12, 4.13 we derive the following observation.

• In general, the TDMA scheme allows a substantial increase of the ag-

gregate network throughput w.r.t. CSMA, even when SO is equal to

1.
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Figure 4.11: THR comparison between CSMA/CA and TDMA for a network
configuration without routers.
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Figure 4.12: THR comparison between CSMA/CA and TDMA for a network
configuration with 2 routers.
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Figure 4.13: THR comparison between CSMA/CA and TDMA for a network
configuration with 3 routers.

• The use of TDMA solves the bottleneck problem of CSMA represented

by the considerable degradation of the performance with the increasing

number of nodes within each subnetwork.

• The minimum CAP length constraint, specified by the 802.15.4 standard,

affects the behavior of the aggregate throughput in two ways. Firstly,

there is an improvement of the throughput increasing the number of

time slots (namely SO). This is because, in many cases the largest

part of the CAP is not used and thus by increasing the duration of

the superframe, the impact of the CAP on the throughput decreases.

Secondly, the throughput exhibits a faster decay when considering 2 and

3 routers w.r.t. the no router case. This is because the negative effect

of the CAP is present in each sub-network, namely twice or three times,

respectively.

• The aggregate network rate increases by increasing the number of routers.

This is because the same resources are shared within each subnetwork

by a smaller number of nodes.
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We now focus on the THR(u), i.e., the throughput achieved by the single

network nodes at MAC layer, according to Equation 3.3. Figure 4.14 shows the

throughput achieved by each network node when three routers are deployed

(see Figure 4.13). From Figure 4.14, we note the following.

• The throughput achieved by each network node with TDMA is always

higher than that of CSMA.

• CSMA appears more fair than the considered contention-free approach.

In fact, in TDMA, the variance of THR(u) is higher than in CSMA.
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Figure 4.14: Throughput achieved by each node in a 3 routers network using
CSMA/CA or TDMA.

4.7 Main Findings

In this chapter, we have found that the performance of G3-PLC can be sub-

stantially improved in-home/building scenarios by enhancing its MAC sub-

layer. In particular, we propose a convergent network architecture that allows

the integration of G3-PLC with Ethernet in order (a) to cope with the strong

channel attenuation that is present in houses/buildings where the signal crosses
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circuit breakers, and (b) to increase the available resources by splitting the net-

work in sub-networks. Although the convergent network leads to a substantial

increase of the aggregate network throughput, its performance appreciably de-

crease with the increase of the number of network nodes. This is mainly due

to the use of the CSMA/CA MAC scheme of G3-PLC. Therefore, we propose

and implement a contention-free MAC scheme, namely a TDMA, based on an

optimized version of the beacon-enable mode of the IEEE 802.15.4. Numerical

results show that TDMA allows to solve the problem of CSMA related to the

increasing number of nodes, and further allows to increase the THR.
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Chapter 5

Cross-Platform Simulator for In-home G3-PLC

Evaluation

In this chapter, an innovative cross-platform simulator that allows to realis-

tically simulate the G3-PLC technology up to the network layer is presented.

The proposed cross-platform consists of two different simulators jointly con-

nected: one for the physical (PHY) layer and one for the data link layer (DLL)/

network layer (NL). The PHY layer simulator is implemented in MATLAB,

while the DLL/network simulator in OMNeT++. A convergent network ar-

chitecture that permits the integration of the G3-PLC technology within a

switched Ethernet network is also presented with the aim of improving the

G3-PLC performance in large scale houses/buildings. The performance of the

considered communication technology are presented through extensive numer-

ical results for the in-home application scenario.

5.1 Introduction

In the last years, we have observed a widespread deployment of distributed

renewable energy sources (DRESs). These are meant to accommodate the

future growth of electricity demand, to produce clean energy, to save power

and to lower carbon emissions. However, the presence of DRESs has also a

direct impact on the electricity grid. In fact, the electricity grid model is
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changing: from a grid where electricity was distributed from the bulk gen-

eration to the customers, the electricity grid is becoming a smart grid (SG),

namely a large-scale system of systems that needs to smartly manage flows of

electricity produced by big or small plants. As a consequence, in addition to

the use of more advanced electrical power components, the modernization of

the power grid involves an extensive use of information and communication

technology (ICT) tools over different domains [53]: generation, transmission,

distribution, and customer. Therefore, from a communication point of view,

the SG can be seen as a communications network that needs to deliver flows

of data to offer several services over these domains [54]. Some representa-

tive examples of services are: automatic meter reading (AMR), meter events

and alarms, substations automation, microgrids integration, demand response

through the smart management and monitoring of household appliances, con-

trol of local renewable energy plants (e.g., photovoltaic generators), managing

the charge of plug-in electric vehicles, etc.. To offer this plethora of services is

fundamental to adopt/develop adequate communication technologies capable

of satisfying the communication requirements of each service, e.g., throughput,

packet error rate, end-to-end delay, etc..

Although finding the best communication technology for SG applications

is not straightforward, recently, industries and standardization organizations

have proposed the use of narrow band (NB) power line communication (PLC)

technology as a cost-effective solution to support the development of the SG

concept. Several solutions and standards have been conceived and developed

for this scope. Among them, G3-PLC [28] is playing a significant role inasmuch

it has been used as the basis for the development of the IEEE P1901.2 [32] and

the ITU-T G.hnem [33] standards for SG applications. G3-PLC is thought to

facilitate ”high-speed”, highly-reliable, long-range communication over the ex-

isting power line grid for grid asset management, meter management, in-home

energy display/management, electric vehicle charging, lighting automation,

and factory automation. Therefore, it has been developed to be used either

for indoor or outdoor applications. In this context, it is fundamental to have

a tool that enables the simulation and thus the prediction of the behavior of
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such a technology over different scenarios.

In this chapter, we propose the use of a cross-platform simulator that allows

to realistically simulate the G3-PLC technology. We consider the customer’s

domain as application scenario, and in particular the in-home scenario. The

choice of the application scenario is dictated by its challenging nature. In fact,

apart from energy management services, the customer’s domain requires the

joint delivery of home networking and automation services in order to realize

the so called smart home (SH) concept, where different communication tech-

nologies need to be integrated in a convergent manner and be interoperable.

Although several network simulators are nowadays available, e.g., ns-2, ns-

3, OMNeT++, JiST and SimPy, a comprehensive implementation and simu-

lation of a G3-PLC system has not been performed yet. This is because of

the implementation issues related to physical (PHY) layer modeling within a

network simulator, which has not been thought for these purposes. In fact,

PHY modeling exploits signal processing techniques whose integration in net-

work simulators is rather costly from a computational point of view. Fur-

thermore, the computational complexity grows with the number of considered

communication technologies and network devices. On the other hand, network

simulators are well suited for higher layers simulation, e.g., medium access con-

trol (MAC) algorithms, network procedures and transport protocols, and are

optimized for these purposes [48].

The proposed cross-platform consists of two different simulators: one for

the PHY layer and one for the data link layer (DLL)/network layer (NL). The

PHY layer simulation is performed using MATLAB and is meant to estimate

the frame error rate (FER). The obtained FER is used to abstract the PHY

layer within the DLL/NL simulator. The network architecture and devices

have been implemented using OMNeT++ [43] and its extension, the INET-

Framework [49].

The chapter contributions are summarized as follows:

• A simulation procedure is proposed. To be more precise, the proposed

model allows its application to any system, despite its initial focus on a

given application technology.
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• A convergent network architecture that enables the integration of the

G3-PLC technology within a switched Ethernet network is suggested to

increase the network performance in large scale houses/buildings.

• The evaluation of the performance for the considered technology are pre-

sented considering a real scenario. In particular, the PHY layer simula-

tion adopts the results of a channel/noise measurement campaign that

has been carried out in a house.

• Several metrics are considered to present the results: (i) aggregate net-

work throughput, (ii) end-to-end delay, (iii) frame drop rate, and (iv)

number of corrected received frames.

The remainder of the chapter is as follows. In Section 5.2, the G3-PLC

technology is described. Then, the cross-platform simulator is presented in

Section 5.3. Extensive numerical results are reported in Section 5.4. Finally,

the main findings follow in Section 5.5.

5.2 G3-PLC Communication Technology Further Details

The PHY and MAC layer specification of G3-PLC has been previously dis-

cussed in Chapter 4 focusing on CENELEC band A. However, the G3-PLC

technology has been designed to support CENELEC bands in the frequency

range 3–148.5 kHz as well as FCC band in the frequencies range 9–490 kHz.

In detail, CENELEC specifies four frequency bands: the band A (3–95 kHz)

that is reserved exclusively to power utilities, the band B (95–125 kHz) can

be used for any application, the band C (125–140 kHz) is dedicated to in-

home networking systems, the band D (140–148.5 kHz) is reserved to alarm

and security systems. Besides this classification, G3-PLC is able to work in a

combination of two or more CENELEC bands, i.e., BC, BCD and BD.

Figure 5.1 shows the block diagram of the implemented version of the G3-

PLC transceiver. Input data bits are initially scrambled and encoded with

a Reed-Solomon (RS) encoder that adds 16 or 8 parity bytes respectively in

“normal” or “robust” mode. Afterwards, a given number of frame control
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header (FCH) symbols is put before data bits in order to be encoded with

a convolutional encoder. The resulting bits are combined in “normal” mode

(i.e., no further operation is done) or in “robust” mode (i.e., each bit is re-

peated 4 times) before being mapped into DQPSK or DBPSK symbols. Three

operating modes are available, namely, “normal” DQPSK, “normal” DBPSK,

and “robust” DBPSK. It is worth noting that the differential modulation is

performed in the time domain (across the data stream of each sub-channel).

Finally a pulse shaped OFDM (PS-OFDM) is used with a cyclic prefix (CP)

extension. Although the receiver is not specified by the standard, in the fol-

lowing, we implement a receiver that makes the following operations: after

synchronization, a serial to parallel conversion is applied, CP samples are dis-

carded and fast Fourier transform (FFT) is applied on the remaining samples.

Then zero forcing equalization, differential PSK (DPSK) and channel decoding

are applied.
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Figure 5.1: Block diagram of the implemented version of G3-PLC transceiver.
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The PHY frame format (see Figure 4.3 (bottom)) starts with the preamble,

which is a fixed number of symbols used for synchronization and detection, in

addition to automatic gain control (AGC) adaptation. Preamble symbols are

transmitted using PS-OFDM without cyclic prefix. The preamble is followed

by a given number of symbols allocated to FCH and, finally, by data payload

(PSDU). FCH brings important control information required to demodulate

the data frame.

The MAC sub-layer is based on the IEEE 802.15.4–2006 specifications for

low-rate wireless personal area network (WPAN) [42]. Basically, the chan-

nel access method is based on CSMA with collision avoidance (CSMA/CA)

mechanism and a random backoff time. The general MAC frame format (see

Figure 4.3 (top)), is substantially based on the 802.15.4–2006 specifications,

except for the segment control field, which is defined in [40] and is used for

tone mapping, contention handling and segmentation purposes.

When showing simulation results, we consider G3-PLCworking in CENELEC

A, C, BC bands and in the FCC band. The representative PHY layer param-

eters are listed in Table 6.2.
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Table 5.1: G3-PLC system parameters.

CENELEC A CENELEC C CENELEC BC FCC

Number of IFFT/FFT points (M) 256 256 256 256
Number of modulated carriers (Nc) 36 7 26 72

First modulated carrier frequency (f1) [kHz] 35.938 128.125 98.438 145.3
Last modulated carrier frequency (f2) [kHz] 90.625 137.5 137.5 478.125

Available bandwidth (f2 − f1) [kHz] 54.688 9.375 39.063 342.2
Sampling frequency (fs) [MHz] 0.4 0.4 0.4 1.2
Frequency spacing (fs/M) [Hz] 1562.5 1562.5 1562.5 4687.5

Number of overlapped samples (No) 8 8 8 8
Number of cyclic prefix samples (NCP ) 30 30 30 30

Number of FCH symbols (NFCH ) 13 52 18 12
Number of preamble symbols (Npre) 9.5 9.5 9.5 9.5

Preamble duration [ms] 6.08 6.08 6.08 2.0267
PS-OFDM symbol duration [µs] 695 695 695 231.7
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5.3 Cross-Platform Simulator

As previously discussed, G3-PLC has been proposed for different applications.

In order to statistically characterize its performance and thus to asses whether

or not it can be a valid solution for a given application scenario, we propose to

implement a cross-platform simulator that makes use of two simulators: one

for the PHY layer and one for the DLL/NL. As explained above, this approach

is dictated by the fact that in general network simulators are not thought to

implement the PHY layer, rather they abstract the PHY layer by using the

information regarding the frame error rate (FER). Then, the performance

assessment can be evaluated. It is worth noting that the proposed approach

allows for statistically characterizing different scenarios by only changing the

channel and noise model in the PHY layer simulator. Furthermore, as it will

be explained in the following, particular topologies, as for example a given

house or a part or a whole access grid, can be also precisely simulated.

In the following, sub-sections 5.3.1 and 5.3.2 respectively describe the PHY

layer and the DLL/NL simulators.

5.3.1 PHY Layer Simulator

The first step towards the cross-platform realization is represented by the PHY

layer implementation. To this end, we decided to use MATLAB together with

data collected from a channel and noise measurement campaign.

First of all, we implemented the G3-PLC transceiver in Figure 5.1. Then,

in order to validate the transceiver implementation, we computed the bit error

rate (BER) for the k-th modulated subcarrier as follows

BERsimul = Prob
[

b̃k 6= bk

]

, (5.1)

where b̃k denote the demodulated bit for the k-th subcarrier, according to Fig-

ure 5.1, and we compare it with the theoretical BER of DBPSK and DQPSK

(according to the corresponding transmitted symbols), which can be written
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in closed form as [55, Chapter 5]

BERDBPSK
theor =

1

2
exp

(

−
Eb

N0

)

, (5.2)

BERDQPSK
theor = Q1 (a, b)−

1

2
I0 (ab) · exp

[

−
1

2

(

a2 + b2
)

]

, (5.3)

where Q1 (a, b) is the Markum Q function, I0 (·) is the modified Bessel function

of zero order, a and b are related to the signal-to-noise ratio per bit (Eb/N0)

as follows

a =

√

2Eb

N0

(

1−
√

1/2
)

, b =

√

2Eb

N0

(

1 +
√

1/2
)

. (5.4)

Figure 5.2 shows the results of the theoretical and simulated model behav-

ior. As we can see, the comparison validates the accuracy of the implemented

transceiver.
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Figure 5.2: Theoretical and simulated BER for DBPSK and DQPSK modula-
tions.
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Channel and Noise Modeling

In the following, we consider the adoption of G3-PLC system for in-home

applications. To this end, the last step to complete the PHY layer simulator

and therefore to derive the FER to be used by the DLL/NL simulator is the

choice of a right channel and noise model. At this point, it should be noticed

that differently from the broadband case where validated channel and noise

models are present in the literature, e.g., [18, Chapter 2] and [56–58], the

knowledge of the in-home PLC channel and noise in the narrow band 30–

500 kHz is very limited. Therefore, in order to obtain some useful results,

we decided to carry out a measurement campaign in a single floor apartment.

The topology of the considered scenario is depicted in Figure 5.3. In detail,

the channel frequency response of the links that connect 11 different outlets

have been measured in the frequency range 30–500 kHz with a resolution

bandwidth of 3 kHz. A total of 110 channel frequency responses have been

measured (see Figure 5.4a). Regarding the noise, it has been measured for

each of the 11 outlets. In particular, 100 noise acquisitions in a mains cycle,

i.e., 20 ms, have been acquired, so that it was possible to estimate the power

spectral density (PSD) via the periodogram (see Figure 5.4b).

PHY Layer Abstraction

Combining the PHY layer simulator and the measurement campaign results,

we are now able to derive the FER for the G3-PLC system in the considered

scenario. At this point, it is important to note that there are two possibilities

for the abstraction of the PHY layer to the DLL layer. The first consists in

computing the FER for a given link while the second consists in computing

the statistics of the FER for a given scenario, e.g., in-home. The former choice

allows for making a topological performance analysis and it can be useful

in the phase of coverage planning, e.g., for the deployment of smart meters,

sensors, etc.. The latter choice allows for deriving a statistical characterization

of the system performance and thus it is useful for those applications such as

consumer electronics that do not foresee a design phase. In the following,
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Figure 5.3: Single floor house topology.

we focus on the statistical analysis of the FER since we have considered the

in-home application scenario. To this end, exhaustive simulations have been

performed for CENELEC A, C, BC bands and for the FCC band, taking

into account all the combination of transmission modes, i.e., normal DQPSK,

normal DBPSK and robust DBPSK, and considering all the allowed number of

PS-OFDM symbols per PHY frame (Ns), according to [28]. Moreover, we have

transmitted 105 frames and we have considered all the 110 channel frequency

responses and the correspondent noise power spectral density (PSD) at the

receiver side. This means that for each transmission, the simulator randomly

extracts one channel response, which is identified by the source and destination

outlet index, and adds the noise. We eventually assume the transmitter and

the receiver to be synchronized and perfect channel estimation.

Figures 5.5, 5.6 and 5.7 depict the CDF of the FER respectively for CEN-

ELEC band A, C and BC. Regarding the results for the FCC band, although

not show, we notice that no corrupted bits/frames have been observed. There-

fore, the PLC channel can be considered ideal in the last case.
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Figure 5.4: Measurement campaign results.
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Figure 5.5: CDF of FER for CENELEC band A.
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5.3.2 Data Link and Network Layer Simulation

Once characterized the PLC channel from the FER point of view, we are able

to exploit the simulation results for DLL and NL simulation.

To this aim, we decided to use the OMNeT++ network simulator to imple-

ment a network model based on G3-PLC communication technology combined

with a switched Ethernet network. The benefits deriving from this approach

have been discussed in Chapter 4, and can be summarized in:

• The possibility to extend the network coverage in large buildings/houses.

This is because the G3-PLC network can be split into subnetworks that

are connected through Ethernet.

• The possibility to interconnect devices compliant to different technolo-

gies, standards an protocols by exploiting the Ethernet connectivity.

• The overall network improvement in terms of reliability and performance.

• The network scalability.
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Since modern switched Ethernet networks exhibit a star topology and the

power line channel can be considered as a bus, we adopt a tree like topology –

as a combination of bus and star topologies – to implement the convergent net-

work (see Figure 4.5). However, G3-PLC does not provide any specification for

the integration in switched Ethernet network. Since the convergence between

Ethernet and G3-PLC is a prerequisite of the whole network implementation,

we need to define a shared common layer that provides interconnectivity among

heterogeneous lower layers.

In this perspective, a fundamental role is played by the network devices

presented in Chapter 2 and detailed in Chapter 4, particularly the router and

the switch. According to the general architecture depicted in Figure 2.6, the

router is a network device characterized by network adapters towards both

Ethernet and G3-PLC. Network adapters exhibit PHY and DLL specification,

whereas on top of these layers we define a convergent network layer responsible

of relaying frames from one network adapter to the other and vice versa. The

router dynamically learns about the existence of end nodes during reception

of frames and updates a forwarding table with link quality information in

order to ensure a more reliable communication on harsh power line channels,

or equally, to increase the network coverage. On the other hand, the switch

behavior, which is well-known since its large deployment in nowadays local area

network (LAN) and home area network (HAN), has been modified in order to

work seamlessly with the routers. In particular, it is able to exploit information

harvested by routers to build and update its own forwarding table. Therefore,

the combination of router and switch procedures enables the integration of

heterogeneous communication technologies leading to a convergent network

and providing the basis for satisfying QoS constraints.

5.3.3 Performance Metrics

In order to quantify the network performance, we take into account four rep-

resentative metrics. Beside aggregate network throughput (THR), we define

three additional metrics: the average end-to-end delay, the average frame drop

rate and the average number of corrected received frames. It is worth not-
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ing that THR is given by Equation 3.1, and is evaluated at the MAC layer

according to Equation 3.3

According to [59], the average end-to-end delay (te2e) is computed as the

time lapse between the instant when a frame is sent from the source and the in-

stant when the frame is received at the destination. As depicted in Figure 2.6,

it is measured between the two higher layers running at the source and des-

tination nodes and it is equal to the sum of all the time intervals spent by

the frame during its queuing, transmission and propagation at every traversed

node. It is worth noting that the delay is strongly dependant on the channel

access method, which is taken into account within the transmission delay term.

In particular, G3-PLC technology exploits CSMA/CA algorithm, hence, the

transmission delay is affected by the random backoff time. Furthermore, each

intermediate forwarding node, i.e., the router, adds extra delay to relay the

frame. In details, the average end-to-end delay is computed as follows

te2e =
1

N

N
∑

u=1





1

N
(u)
RX

N
(u)
RX
∑

i=1

n(i)
sn

(

t(i)queue + t
(i)
transmission + t

(i)
propagation

)



, (5.5)

where N is the number of nodes, andN
(u)
RX is the total number of correct frames

received by u-th node. Moreover, queuing (t
(i)
queue), transmission (t

(i)
transmission)

and propagation (t
(i)
propagation) delays for the i-th frame are weighted for the

factor n(i)
sn
, which is the number of subnetworks the i-th frame has to cross in

order to reach the u-th node. We notice that processing delays at the transmit-

ter and receiver have been assumed ideal. Furthermore, since the propagation

delay in electric cables is 5.775 µs/km [28], we neglect its contribution due to

small length of cables within households.

The third considered metric is the average frame drop rate (RFD). This

quantity is representative of the efficiency of the channel access method. It is

computed as

RFD =
1

N

N
∑

u=1

N
(u)
FD

N
(u)
TX

, (5.6)
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where N is the number of nodes, N
(u)
FD is the number of dropped frames by the

u-th node due to exceeding the backoff attempt limit, and N
(u)
TX is the number

of correct transmitted frames by the u-th node.

Finally, we take into account the average number of corrected frames re-

ceived that is computed as follows

NRX =
1

N

N
∑

u=1

N
(u)
RX . (5.7)

We notice that this parameter is strictly related to the network coverage. In

fact, for a fixed number of nodes, the greater NRX , the larger the network

coverage is.

5.4 Smart Home Network Simulation Results

5.4.1 Simulation Setup

In order to obtain numerical results, we consider the G3-PLC system working

in the CENELEC A, C, BC bands and in the FCC band using the “normal”

DQPSK transmission mode. We assume each PHY frame to be composed of

40, 64, 128 and 20 PS-OFDM symbols respectively for CENELEC A, C, BC

and FCC bands. Furthermore, with reference to Figure 4.3, a fixed overhead of

20 bytes is assumed as the result of the minimum MAC overhead (8 bytes) in

addition to source and destination MAC addresses (6 bytes each). Therefore,

the resulting MAC payloads are 143, 75, 171 and 135 bytes for the above

mentioned bands. It is worth noting that source and destination personal area

network (PAN) addresses, shown in Figure 4.3, have been disregarded since

router and switch are designed to manage the network dealing with MAC

addresses of nodes, as described in Chapter 4.

The simulation parameters are listed in Table 5.2, where we highlight the

shortest PHY frame duration for FCC band due to the sampling frequency

(see fs in Table 6.2), i.e., three times greater than CENELEC bands.
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Table 5.2: G3-PLC simulation parameters.

CENELEC A CENELEC C CENELEC BC FCC

Number of PS-OFDM symbols per PHY frame (Ns) 40 128 64 20
PHY frame duration [ms] 42.9 131.2 63.1 9.4

PHY payload dimension (n) [bytes] 163 95 191 155
MAC overhead [bytes] 20 20 20 20

MAC payload dimension [bytes] 143 75 171 135
Maximum PHY data rate [kbps] 30.4 5.8 24.2 131.4

8
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In order to model the power line transmission channel in OMNeT++, we

exploit the inversion method applied to the cumulative distribution function

(CDF) of the FER (see Section 5.3.1). Regarding the Ethernet network, we

model 100BASE-TX over cat5 cables assuming ideal the FER and the delays.

We build the simulation scenario using from 6 up to 60 G3-PLC nodes

and we evaluate the THR, the te2e, RFD and NRX without routers, or when

two and three routers are considered. The point-to-point traffic is randomly

generated among G3-PLC nodes, i.e., each node generates traffic destined to

any other node (belonging to the same subnetwork or to different subnetworks)

according to a peer-to-peer model. Furthermore, we take into account different

network load conditions:

Saturation traffic happened when each node has immediately a packet avail-

able for transmission, after the completion of each successful transmis-

sion [51].

Heavy load traffic generated by each node according to an exponential dis-

tribution with mean equal to 1 second.

Medium load traffic generated by each node according to an exponential

distribution with mean equal to 10 second.

Light load traffic generated by each node according to an exponential distri-

bution with mean equal to 60 second.

In this perspective, we consider a buffer queue for each network node equal to

1 frame. Furthermore, we assume that the transmission does not wait for any

acknowledgement receipt.

5.4.2 Numerical Results

Figures 5.8, 5.9, 5.10 and 5.11 show the THR according to different network

traffic conditions. From these figures, we derive the following observations:

• The introduction of 2 and 3 routers is beneficial in saturation (see Fig-

ure 5.8) and heavy load (see Figure 5.9) conditions while it almost leads
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to the same THR as the no router case in medium (see Figure 5.10) and

light load (see Figure 5.11) conditions. However, we notice that in larger

environments, e.g., large buildings, we can expect that the use of routers

is beneficial to increase the coverage and thus the throughput.

• There is a performance decay with the increasing number of network

nodes in saturation (see Figure 5.8) and heavy load (see Figure 5.9)

conditions due to the CSMA algorithm.

• FCC band offers higher THR in saturation (see Figure 5.8) and heavy

load (see Figure 5.9) conditions, while it is underutilized when dealing

with medium (see Figure 5.10) and light (see Figure 5.11) loads.

Furthermore, although not inferable from Figures 5.8, 5.9, 5.10 and 5.11, the

THR depends on the number of correct received frames, which, in turn, is

dependent on both CSMA and the power line channel characteristic, i.e., the

FER.
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Figure 5.8: THR in saturation traffic conditions.

Figures 5.12, 5.13, 5.14 and 5.15 show the average end-to-end delay. From

the comparison of the delays for different traffic loads we make the following
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Figure 5.9: THR in heavy load traffic conditions.

 6 12 18 24 30 36 42 48 54 60
0

1

2

3

4

5

6

7

8

9

10
Exponential(10) traffic

N

T
H

R
 [k

bp
s]

 

 
A − no routers
A − 2 routers
A − 3 routers
C − no routers
C − 2 routers
C − 3 routers
BC − no routers
BC − 2 routers
BC − 3 routers
FCC − no routers
FCC − 2 routers
FCC − 3 routers

Figure 5.10: THR in medium load traffic conditions.
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Figure 5.11: THR in light load traffic conditions.

observations:

• The introduction of 2 and 3 routers slightly increases the delays since

the CSMA has to be performed twice whenever source and destination

nodes belong to different subnetworks.

• The delays in FCC band are always smaller than those in CENELEC

bands. This behavior is due to the higher transmission rate and lower

frame duration in FCC band.

• The delays tend to be constant with the increasing number of nodes in

saturation (see Figure 5.12) and heavy load (see Figure 5.13) conditions.

This is because the delay is computed on the correct received frames.

Clearly, the average frame drop rate increases with an increasing number

of nodes (see Figures 5.16, 5.17, 5.18 and 5.19).

• The delays decrease with the decreasing network traffic load since the

higher probability to find the channel idle and the lower number of col-

lisions.
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Figure 5.12: Average end-to-end delay in saturation traffic conditions.
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Figure 5.13: Average end-to-end delay in heavy load traffic conditions.
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Figure 5.14: Average end-to-end delay in medium load traffic conditions.
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Figure 5.15: Average end-to-end delay in light load traffic conditions.
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Figures 5.16, 5.17, 5.18 and 5.19 show the average frame drop ratio for

different traffic conditions. This performance metric is related to the efficiency

of the CSMA method. In this perspective, we make the following observations.

• The introduction of 2 and 3 routers is always beneficial since it splits the

whole network in 2 or 3 subnetworks where the CSMA performs more

efficiently since there is a smaller number of nodes per subnetwork.

• CSMA is more efficient in FCC band than CENELEC bands since it

shows the lowest drop ratio in all network traffic conditions due to the

shortest PHY frame duration.

• The drop ratio grows faster in absence of routers when considering the

increasing number of nodes.
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Figure 5.16: Average frame drop rate in saturation traffic conditions.

Finally, the average number of correct receptions is depicted in Figures 5.20,

5.21, 5.22 and 5.23. We derive the following observations:

• The introduction of 2 and 3 routers provides a greater number of cor-

rected received frames (thus a better network coverage) when consider-
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Figure 5.17: Average frame drop rate in heavy load traffic conditions.
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Figure 5.18: Average frame drop rate in medium load traffic conditions.
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Figure 5.19: Average frame drop rate in light load traffic conditions.

ing saturation (see Figure 5.20), heavy (see Figure 5.21) and partially

medium load (see Figure 5.22) traffic conditions.

• In light load conditions (see Figure 5.23), the benefit deriving from the

introduction of 2 or 3 routers cannot be appreciated since the small

number of frames received and the small area of the considered house.

• The number of correct receptions is affected both by the channel condi-

tions and the CSMA algorithm.

5.4.3 Obervations on the Usability of the Cross-Platform

The cross-platform simulator can be used to verify whether a communication

technology, e.g., G3-PLC, satisfies a given set of requirements for a certain

application scenario. As an example, we can reconsider the traffic profile clas-

sification, presented in [60], within the customer’s domain. In detail, we focus

on mission-critical, soft real-time, and non-real-time traffic profiles. Mission-

critical traffic represents alarm-response commands and it is classified into

LOW-LOW (3ms), LOW (16ms), MEDIUM (160ms), and HIGH (> 160ms)
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Figure 5.20: Average number of corrected received frames in saturation traffic
conditions.
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Figure 5.21: Average number of corrected received frames in heavy load traffic
conditions.
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Figure 5.22: Average number of corrected received frames in medium load
traffic conditions.
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latency classes [61]. Soft real-time traffic regards interactive maintenance com-

mands, periodic smart plug readings and other sensor measurements. In this

case, commands and measurements are sporadic (with periods in the order of

1–15min [62]), and latency requirements are soft (∼ 1min). Finally, non-real-

time traffic profile refers to the planning of services to exchange information,

e.g, firmware updates and similar file-transfer operations. It requires higher

information rates than the previous traffics, but it is delay-tolerant.

Now, we can exploit the numerical results obtained with the cross-platform

simulator to infer that (see Figures 5.12, 5.13, 5.14 and 5.15) the G3-PLC

technology may support part of the mission-critical traffic profile, while it

fully supports soft real-time and non-real-time traffic profiles.

5.5 Main Findings

This chapter has presented a cross-platform simulator for G3-PLC systems.

The cross-platform simulator consists of two simulators: one for the physical

layer, and one for the higher layers. The physical layer simulator has been

implemented in MATLAB and it is meant to compute the frame error rate

of a given communication link. The higher layers simulator has been imple-

mented in OMNeT++ and it makes use of the frame error rate to abstract

the physical layer. The cross-platform simulator enables the computation of

the performance of the system considering either a given communication link

or a given communication scenario. In order to improve the performance of

G3-PLC systems, a convergent network architecture where G3-PLC devices

are integrated into a switched Ethernet network has been presented. The con-

vergent network has been realized by defining router and switch devices. The

platform has been used to derive the network performance in terms of through-

put, end-to-end delay, frame drop rate, and coverage. The results have been

exploited to test the requirements meeting of G3-PLC for a certain application

scenario.
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Chapter 6

Cross-Platform Simulator for G3-PLC

Evaluation in Access Networks

In this chapter the cross-platform simulator is used to evaluate G3-PLC sys-

tems for SG applications in the access network scenario. This is fundamental

since the interaction of the outside world, i.e., the access network, with the

SH is mandatory in order to achieve and exploit the SG concept. Moreover,

to improve the performance and coverage of G3-PLC, a simple adaptive tone

mapping algorithm together with a routing algorithm are also presented.

6.1 Introduction

The SG can be seen as a communications network that needs to deliver flows

of data to offer several services over different domains [53]: generation, trans-

mission, distribution, and customer. Some examples of services are: AMR,

meter events and alarms, substations automation, microgrids integration, de-

mand response through the smart management and monitoring of household

appliances, control of local renewable energy plants, integration of plug-in

electric vehicles, etc.. To offer this plethora of services, it is fundamental to

adopt/develop adequate communication technologies capable of satisfying the

communication requirements of each service, e.g., throughput, FER, end-to-

end delay, etc..
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Although finding the best communication technology for SG applications

is not straightforward, recently, industries and standardization organizations

have proposed the use of NB-PLC as a cost-effective solution to support the

development of the SG concept. Several solutions and standards have been

conceived and developed for this scope. Among them, G3-PLC [28] is playing

a significant role inasmuch it has been used as the basis for the development

of the IEEE P1901.2 [32] standard and the ITU-T G.hnem [30, 33] standard

for SG applications.

In this context, it is important to have a simulation tool that permits to

predict the performance of such a technology over different scenarios.

In this paper, we present a cross-platform simulator that allows for simu-

lating the G3-PLC technology. We consider the distribution domain as appli-

cation scenario, and in particular the access network.

The proposed cross-platform consists of two different simulators: one for

the PHY layer and one for the DLL/adaptation (ADP) layer. The PHY layer

simulator is implemented MATLAB and it is meant to estimate the FER of a

given link. The obtained FER is used to abstract the PHY layer within the

DLL/ADP layer simulator, which is implemented in OMNeT++.

To improve the reliability of G3-PLC, beside the cross-platform simulator,

we also propose a simple bit loading algorithm and a routing algorithm.

The remainder of the chapter is as follows. Section 6.2 describes the ap-

plication scenario. Then, Section 6.3 overviews the G3-PLC technology and

presents the bit-loading algorithm. The cross-platform simulator is presented

in Section 6.4. Extensive numerical results are reported in Section 6.5. Finally,

the conclusions follow in Section 6.6.

6.2 Application Scenario

We consider the application of G3-PLC in the low voltage (LV) power dis-

tribution grid, and in particular between the medium voltage medium volt-

age (MV)/LV transformer stations and the house meters, i.e., in the access

network [18, §2.3].
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In the following, sections 6.2.1 and 6.2.2 respectively describe the consid-

ered network topology and the SG services that that will be adopted in the

rest of the paper to evaluate the performance of G3-PLC.

6.2.1 Network Topology

A general description of the characteristics of the EU access network topology

can be found in [18,63,64]. Beside the previous works, [65] proposes a topology

model that is mainly developed for US grids. According to the previous works,

there is a distinction between European and US/Asia networks. These differ

for the density of households (higher in EU) and for the way the current

feeds the house, e.g., in US is not difficult to find houses which are fed with

different phases, while in EU the latter case is not frequent, although possible.

However, in general, there is an agreement on the characteristics of the network

topologies. Regarding the EU network, which will be considered from now on,

it is agreed that from the MV-LV transformer a three phase backbone starts.

Then, from the backbone one or more branches (up to 10) can be present where

tens of households per branch can be connected (see [64, §3], [18, §3], [63,

§2]). The network length, namely the maximum distance between the MV-LV

transformer and the households, is up to 1 Km, while the number of houses

that are fed by a given MV/LV transformer station varies between some tens

to one/two hundreds.

In order to simulate an access network, we made use of the bottom-up chan-

nel generator presented in [56]. Briefly, this simulator generates the channels

frequency response between pairs of network nodes from the physical descrip-

tion of the network, namely from knowledge of the topology, cables and loads.

Therefore, beside the network topology, another important parameter to model

the network and in particular to compute the channel response between pairs

of network nodes is the access impedance, i.e., the impedance seen at the input

of each household. To this respect, we highlight that the literature is really

poor, and we only found the work of Sigle [66] that reports three examples of

measured access impedance up to 500 kHz. Among these examples, we used

the two access impedances measured in households of a residential scenario to
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model the households in our network. Finally, we consider NAYY150SE cables

for the backbone and the branches (150 mm2 area for each of the four cores),

and NAYY50SE cables to connect the household to the branches (50 mm2

area of each of the 2 cores).

Figure 6.1 shows the access network topology that will be used in this

work to obtain numerical results. It represents a residential area of about

92,000m2 where 25 houses connected to 7 branches are fed by a single MV/LV

transformer. Each house is identified by a number between 13 and 58, and the

MV/LV transformer station is identified by the number 1.

For the considered topology, 650 channel frequency responses within 30–

500 kHz have been generated. Some examples are reported in Figure 6.2.

Regarding the noise, we model it according to [67] as a background noise in

the narrow band (3–500 kHz). In particular, we assume the PSD of the noise

to decrease exponentially as it is shown in Figure 6.2. We notice that the

exponential behavior of the NB background noise has also been experienced

in US distribution grids [68].

Figure 6.1: Physical network topology and host ID.
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Figure 6.2: Top: example of channel frequency response realizations. Bottom:
PSD profile of the background noise.

6.2.2 Network Traffic

In order to simulate the behavior of G3-PLC in the access network, we need to

model the traffic that is required by SG application. To this end, we consider

the work [60] according to which SG applications generate traffic that can be

classified into three categories: mission-critical, soft real-time, and non-real-

time traffic profiles. Mission-critical traffic represents alarm-response com-

mands and it is classified into LOW-LOW (3 ms), LOW (16 ms), MEDIUM

(160 ms), and HIGH (> 160 ms) latency classes [61]. Soft real-time traffic

regards interactive maintenance commands, periodic meter readings and other

sensor measurements. In this case, commands and measurements are sporadic

(with periods in the order of 1–15 min [62]), and latency requirements are soft

(∼ 1 min). Finally, non-real-time traffic profile refers to the planning of ser-

vices to exchange information, e.g, firmware updates and similar file-transfer

operations. It requires higher information rates than the previous traffics, but

it is delay-tolerant.

The previous traffic categories provide a description of SG application
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requirements, but they are not sufficient for testing network performances.

Therefore, an exhaustive traffic model is needed in order to model the gen-

eration of packets within the simulator. To this aim, according to [60], we

consider the traffic generated by energy services interfaces (ESIs), i.e., net-

work nodes, to be directed to the distribution access point (DAP), i.e., the

MV/LV transformer station. In Table 6.1, we detail the considered traffic

models.

Table 6.1: Smart Grid traffic model.

Traffic description Traffic generation Mean value [s]
Packets / dimension

[bytes]

Alarm signals Exponential 240 1 / 1000
Network joining Exponential 3600 1 / 1000
Metering data Exponential 60 1 / 1000

Telemetry signals Exponential 60 1 / 1000

Information reports
Exponential Ton = 0.2

–
on-off traffic Toff = 10

6.3 G3-PLC Technology Overview

Exhaustive details about G3-PLC technology have been provided in previous

chapter. Since we are interested in SG applications in the LV distribution grid,

when showing numerical results, we consider G3-PLC working in CENELEC

A and FCC bands. The corresponding PHY layer parameters are listed in

Table 6.2. We also assume that each PHY frame is composed of 20 and 56 PS-

OFDM symbols, respectively for CENELEC A and FCC, each carrying data

modulated with robust DBPSK. This assumption respectively leads to 22 and

12 bytes of payload dimension. Consequently, the maximum achievable bit-

rates is 3.26 kbps and 10.17 kbps for CENELEC A and FCC band, respectively.

Table 6.3 reports other reference PHY layer parameters that will be used for

the simulations. A detailed set of PHY layer parameters for G3-PLC can be

also found in [30].
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Table 6.2: G3-PLC system parameters.

CENELEC A FCC

Number of IFFT/FFT points (M) 256 256
Number of modulated carriers (Nc) 36 72

First modulated carrier frequency (f1) [kHz] 35.938 145.3
Last modulated carrier frequency (f2) [kHz] 90.625 478.125

Available bandwidth (f2 − f1) [kHz] 54.688 342.2
Sampling frequency (fs) [MHz] 0.4 1.2
Frequency spacing (fs/M) [Hz] 1562.5 4687.5

Number of overlapped samples (No) 8 8
Number of cyclic prefix samples (NCP ) 30 30

Number of FCH symbols (NFCH ) 13 12
Number of preamble symbols (Npre) 9.5 9.5

Preamble duration [ms] 6.08 2.0267
PS-OFDM symbol duration [µs] 695 231.7

Table 6.3: G3-PLC simulation parameters.

CENELEC A FCC

Transmitted PSD [dBm/Hz] -13
Carrier modulation robust DBPSK robust DBPSK

Number of PS-OFDM symbols
56 20

per PHY frame (Ns)
PHY frame duration [ms] 54 9.4

PHY payload dimension n [bytes] 22 12
Maximum PHY data rate [kbps] 3.26 10.17
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6.3.1 Adaptive Tone Mapping

G3-PLC permits the use of bit and power loading algorithms. According

to [28], the transmitter performs a tone map request exploiting the FCH,

which is a multi symbol field following the preamble. Upon reception of tone

map request, the receiver estimates the signal to noise ratio (SNR) of the

received signal for each modulated carrier, and informs the remote transmitter

with a tone map response. At this point, the transmitter is able to adaptively

select the usable tones, optimum modulation and code rate to ensure a reliable

communication. In particular, the transmitter selects the tones to send data

symbols, and the ones to send dummy data symbols (noise) that have to be

discarded at the receiver. At this point, it is important to note that the choice

of the loading algorithm to be implemented is up to the chip maker.

To this respect, we propose to use a very simple on-off loading algorithm.

The proposed bit-loading algorithm targets the bit rate maximization under a

BER and a power constraint on each carrier, and a constraint on the constel-

lation to be employed. It can be formulated as follows

max R =
∑

k∈NC

b(k), (6.1)

s.t. BER(k) ≤ γ, (6.2)

b(k) ∈ {0, 1} , (6.3)

P (k) ≤ P̄ , ∀k ∈ NC , (6.4)

where b(k), BER(k), P (k), and P̄ respectively represent the bits loaded, the

BER and the transmitted power on carrier k, and the maximum transmit

power on each carrier, which is assumed to be constant, e.g., it is given by a

PSD mask constraint. Furthermore, NC denotes the set of modulated carriers.

It is well known that for uncoded systems the BER constraint is equivalent

to an SNR constraint [69]. Furthermore, an SNR gap can be considered for a

given channel coding scheme [69]. In our case, we decided to choose the SNR

gap, or equally the SNR threshold from the curves of the average BER (aver-

aged across carriers) obtained for uncoded and coded DBPSK (see Figure 6.3).
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In particular, we set the SNR threshold equal to 2 dB, so that the BER of the

coded system is of about 10−4. Figure 6.3 has been obtained using the G3-

PLC system in CENELEC A band with the parameters of Tables 6.2, and 6.3.

We notice that although not shown, similar results have been obtained for

the FCC band. Furthermore, in Figure 6.3, the curve labeled with ”theoreti-

cal” shows the theoretical BER for the uncoded DBPSK system, computed as

described in [55, § 5].

Now, once the SNR threshold is set, problem (6.1) is solved by loading

DBPSK symbols only in those carriers whose SNR is higher or equal to the

threshold.
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Figure 6.3: BER vs Eb/N0 for DBPSK modulation with or without coding
techniques.

6.4 Cross-Platform Simulator

In order to test the performance of G3-PLC in the access networks, and thus

to asses whether or not it can be a valid solution for a given SG application

scenario, we implemented a cross-platform simulator composed by two simu-

lators: one for the PHY layer and one for the DLL and ADP layers. They are
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briefly described n the following.

6.4.1 PHY Layer Simulator

The PHY layer simulator makes use of the channel generator described in

section 6.2.1 and of a PHY layer simulator of G3-PLC developed in MATLAB.

From these two simulators, we are able to compute the FER that characterize

every link of the network topology. The FER is then used as an abstraction

of the PHY layer by the DLL and ADP layers simulator.

6.4.2 DLL and ADP Layer Simulator

The DLL and ADP layers simulator is implemented using OMNeT++ which is

an event based simulator that allows for implementing channel access policies,

routing algorithms and traffic models.

G3-PLC specifies an ADP layer which is based on the IPv6 over low power

wireless personal area networks (6LoWPAN) [70]. Furthermore, 6LoWPAN

ad-hoc (LOAD) routing protocol LOAD, which is a simplified form of ad-hoc

on-demand distance vector (AODV) for 6LoWPAN, is selected as an effective

routing protocol to handle changing link conditions. LOAD operates on ADP

layer creating a logical network topology below IPv6 network layer. For the

IPv6 layer, the 6LoWPAN adaptation layer is considered as a single link.

LOAD is designed to find the optimized route that minimizes the route cost

(RC) as follows

min
i

{

RC
(

p(i)
)}

, (6.5)

where pi denotes the i-th route from the source to the destination. We decide

to define it as follows

RC
(

p(i)
)

= −
1

N
(i)
H

N
(i)
H −1
∏

h=0

C {[Dh, Dh+1]}, (6.6)

where the i-th route goes through the nodes D0, D1, . . . , DN
(i)
H

. N
(i)
H denotes

the number of hops (0 < N
(i)
H ≤ adpMaxHops), and C {[Dx, Dy]} is the link
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cost between device Dx and Dy. We notice that, according to [40], we consider

adpMaxHops = 4. As regards the link cost, we propose to take into account

PHY transmission parameters and to model it as follows

C {[Dx, Dy]} = (1− FER {[Dx, Dy]})
NON

c {[Dx, Dy]}

Nc
, (6.7)

where FER {[Dx, Dy]} is the FER associated to the link between nodes Dx

and Dy. N
ON
c {[Dx, Dy]} is the number of on carriers (see section 6.3.1), and

Nc the total number of modulated carriers. The proposed route cost takes into

account the delay of the route with the term 1/N
(i)
H (by assuming the delay

of each link to be constant), while the link cost computes the probability of

receiving correct bits.

Now, in order to evaluate the G3-PLC performances, we consider the

throughput and the average end-to-end delay of each node. The through-

put is computed according to Eq. 3.3, while the average end-to-end delay is

computed as the time lapse between the instant when a frame is sent from

the source and the instant when the frame is received at the destination. It is

computed as follows

t
(u)
e2e =

1

N
(u)
RX

N
(u)
RX
∑

i=1

N
(i)
H

(

t(i)q + t
(i)
tx + t(i)p

)

, (6.8)

where N
(u)
RX is the total number of correct frames received by the coordinator

and sent by the u-th node. Moreover, queuing (t
(i)
q ), transmission (t

(i)
tx ) and

propagation (t
(i)
p ) delays for the i-th frame are weighted for the factor N

(i)
H ,

which is number of hops (N
(i)
H > 0) the frame has to do in order to reach the

destination. We notice that processing delays at the transmitter and receiver

have been assumed ideal. Furthermore, since the propagation delay in electric

cables is 5.775 µs/km [28], we neglect its contribution.
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6.5 Numerical Results

In order to show the functionality of the proposed cross-platform simulator,

we consider the network of Figure 6.1 where we assume the communication to

be from the network nodes 13–53 to the network coordinator (node 1).

The first scenario that we consider consists of the transmission of 104 frames

from each node to the coordinator. It is meant to show the functionality of

adaptive tone mapping (see section 6.3.1). Figure 6.4 shows the BER, the FER,

and the throughput for the considered scenario with and withouth the use of

tone mapping, when no relay is used, namely when the communication exploits

the direct link between transmitter and receiver. The considered frequency

band is the CENELEC A. Although not shown, we report that no errors have

been experienced for transmission over the FCC band for all nodes, and further

their correspondent throughput is equal to the maximum PHY data rate shown

in Table 6.3, i.e., 10.17 kbps. From Figure 6.4, we can see that the use of tone
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Figure 6.4: BER, FER, and throughput for direct link communication between
each network node and the coordinator.

mapping decreases the BER to the expected value of about 10−4 and in some

cases also increases the throughput, e.g., node ID 21 and 22. Furthermore, it is
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worth noting that nodes 13, 14, 15, 16, 23 and 24 exhibit BER and FER equal

to 0, but they are not visible from the coordinator since their correspondent

throughput is 0. We highlight that this behavior is due to the fact that none of

these node experience in their modulated carriers an SNR that is higher than

the threshold, therefore they do not transmit data at all (see section 6.3.1).

6.5.1 MAC/ADP Layer Simulation

The second scenario that we consider is the following. We assume a metering

scenario. In detail, a smart meter, represented by a G3-PLC node, is placed in

every house and it transmits 1 frame of data per reading to the coordinator.

The generation of this traffic represents a deterministic periodic transmission

of frames from the meter to the coordinator. In this perspective, according to

the worst case in [71], we assume that each node generates traffic according to

an exponential distribution with mean equal to 60 s.

Figure 6.5 shows the logical network topology as the result of the applica-

tion of the routing algorithm for CENELEC A band. It is worth noting that

few nodes (yellow circles) act as relay, in order to allow the communication

between all network nodes and coordinator. Regarding the FCC band, we

notice that no relay turns out to be used.

Figure 6.6 reports the throughput and the end-to-end delay for both fre-

quency bands. Furthermore, regarding CENELEC A, the results are reported

either for the case when the routing algorithm (LOAD) is adopted or when it

is not. It is interesting to note that, when LOAD is applied, all network nodes

reach almost the same throughput (this is because the network is overloaded)

and the network coverage is improved. However, the delays of relayed frames

are proportional to the number of hops, according to Eq. 6.8.

As last scenario, we consider the case where different SG applications run

over the network.

From Table6.1, we notice that, alarm signals, network joining, metering

data and telemetry signals are characterized by a single packet of 1000 bytes.

However, there is not any configuration of G3-PLC parameters which supports

a single PHY frame with a dimension of 1000 bytes. Therefore, to cope with
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Figure 6.5: Logical network topology for CENELEC A band.
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Figure 6.7: CDF of different traffic profiles for CENELEC A and FCC bands.

this problem, we consider two cases: (i) the transmission of a single frame

with maximum dimension of 22 and 12 bytes, respectively for CENELEC A

and FCC, and (ii) the transmission of a frame burst whose total dimension is

1000 bytes. The traffic model has been applied so that every network node

transmits to the coordinator. A total of 6 hours of simulations have been

performed.

Figure 6.7 shows the CDF of the end-to-end delay of each traffic profile.

In particular, top-left and top-right figures show the CDF for a single frame

transmission, respectively for CENELEC A and FCC bands. Bottom-left and

bottom-right figures show the CDF for a frame burst of 1000 bytes, respectively

for CENELEC A and FCC bands.

From Figure 6.7 one can assert whether or not a given class of service can be

offered. As an example, we can assert that LOW (16 ms) and MEDIUM (¡160

ms) latency class services of alarm-response command could not be offered in

both CENELEC A or FCC bands assuming 1000 bytes of data. Nevertheless

they could with high reliability considering FCC band and 1 frame of data.
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6.6 Main Findings

The use of a cross-platform simulator can be beneficial to predict the perfor-

mance of a given communication technology in a certain application scenario.

Adaptive bit-loading and routing algorithms are needed to make the commu-

nication network reliable and improve the network coverage.
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In this thesis, we have focused on the SH networks. In particular, we have

defined a general SH network architecture and its main devices that should be

used to overcame coexistence, interconnectivity and interoperability problems.

In this scenario, we have focused on a representative technology, i.e., PLC, try-

ing to characterize its behavior within a home scenario. We have performed

field trials where the results have highlighted some disadvantages related to

the use of the NB-PLC technology for SH application purposes. Therefore,

exploiting a network simulator, we have modeled NB-PLC technology PHY

and MAC layers in order to evaluate its performance in peculiar conditions

and analyze potentialities and boundary conditions of the network. More-

over, we have proposed an innovative contention-free MAC scheme that allows

performance improvements. Finally, we have presented a cross-platform simu-

lator which allows to realistically simulate the PLC technology within in-home

scenarios.

The main achievements are summarized in the following.

7.1 The Smart Home Network

Several communication technologies, suitable for in-home applications, have

been surveyed, focusing on wireline, wireless and PLC. Nevertheless, they

make use of different standards, protocols and even different media to com-
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municate, and consequently, they are not interoperable/interconnected and/or

can not even coexist. To this respect, we have focus on coexistence, intercon-

nectivity and iteroperability issues as the major obstacles to the realization of

the SH. Then, we have presented a convergent network architecture in order

to achieve the interconnectivity. This has been done through the definition of

a of a shared common layer that is able to manage heterogeneous lower layers

allowing network convergence. Furthermore, we have discussed in detail the

features of the main network devices.

7.2 PLC Network Testbed for In-home Performance Evaluation

Focusing on PLC technologies, we have tested, in single and multi floor houses,

two representative NB-PLC devices, i.e., one based on FSK and the other

based on OFDM. Test results have shown that, although OFDM, in general,

allows for higher peak throughput than FSK, it exhibits poor performance in

terms of FER, thus throughput, when working in the multi-floor house. This

issue has been solved developing a network testbed where BB-PLC devices are

used to provide an Ethernet backbone that allows for (i) connectivity between

NB-PLC and BB-PLC devices, and (ii) range extension.

7.3 Enhancements of G3-PLC Technology for Smart Home Appli-
cations

In order to cope with OFDM poor performances, we have focused on G3-PLC

technology where we have found that performances can be substantially im-

proved by enhancing its MAC sub-layer. In particular, we have proposed a

convergent network architecture that allows the integration of G3-PLC with

Ethernet in order (a) to cope with the strong channel attenuation that is

present in houses/buildings where the signal crosses circuit breakers, and (b)

to increase the available resources by splitting the network in sub-networks.

Although the convergent network has shown a substantial increase of the ag-

gregate network throughput, its performance is appreciably decreased with

the increase of the number of network nodes. This is mainly due to the use
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of the CSMA/CA MAC scheme of G3-PLC. Therefore, we have proposed and

implemented a contention-free MAC scheme, namely a TDMA, based on an

optimized version of the beacon-enable mode of the IEEE 802.15.4. By means

of numerical results we have shown that TDMA allows to solve the problem

of CSMA related to the increasing number of nodes, and further allows to

increase the THR.

7.4 Cross-Platform Simulator for In-home G3-PLC Evaluation

Finally, we have presented a cross-platform simulator for G3-PLC systems.

The cross-platform simulator consists of two simulators: one for the PHY

layer, and one for the higher layers. The physical layer simulator has been

implemented in MATLAB and it is meant to compute the frame error rate

of a given communication link. The higher layers simulator has been imple-

mented in OMNeT++ and it makes use of the frame error rate to abstract the

physical layer. We have pointed out that the cross-platform simulator enables

the computation of the performance of the system considering either a given

communication link or a given communication scenario. Furthermore, in order

to improve the performance of G3-PLC systems, a convergent network archi-

tecture where G3-PLC devices are integrated into a switched Ethernet network

has been presented. We have realized the convergent network by providing a

shared common layer and by defining networking rules for router and switch

devices. The platform has been used to derive the network performance in

terms of throughput, end-to-end delay, frame drop rate, and coverage. The

results have been exploited to test the requirements meeting of G3-PLC for a

certain application scenario.

7.5 Cross-Platform Simulator for G3-PLC Evaluation in Access Net-

works

The cross-platform simulator have been also used to evaluate G3-PLC systems

for SG applications in the access network scenario. Moreover, to improve

the performance and coverage of G3-PLC, a simple adaptive tone mapping
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algorithm together with a routing algorithm have been also presented.

7.6 Future Perspectives

As a final comment we would like to show some future perspectives which

could represent further research topics. First of all, it would be interesting

consider different traffic models. Although it has been done in Chapter 6 for

the outdoor access network scenario, the traffic differentiation should be ex-

tended to the in-home scenario, where high data rate technologies are also

present. Secondly, following the traffic differentiation, it would be interesting

to statistically characterize the performance metrics, e.g., introducing the min-

imum and maximum throughput, with respect to different network topologies.

From the analysis of the statistical behavior of a given performance metrics,

we could also highlight whether there is a critical class of links for a given

topology. Finally, since the G3-PLC specifications do not cover every single

aspect, there are some PHY implementation issues that should be improved.

For instance, the point-to-point adaptive tone mapping presented in Chapter 6

could be subjected to a network-wide optimization, where the tone mapping

is adapted for more links simultaneously. It would also be worth noting the

effect of those PHY improvements from the network layer point of view.
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Appendix

8.1 Karush Kuhn Tucker Conditions

A general optimization problem is written in standard form as follows,

min
x∈D

f0 (x)

s.t. fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p, (8.1)

where x is the optimization variable, f0 is the objective or cost function, fi are

the inequality constraint functions, and gi are the equality constraint functions.

Moreover, the domain C =

[

m
⋂

i=1

dom (fi)

]

∩

[

p
⋂

i=1

dom (gi)

]

is not empty.

The Lagrangian L : D × R
m × R

p → R associated to problem (8.1) is

defined as

L (x,λ,ν) = f0 (x) +

m
∑

i=1

λifi (x) +

p
∑

i=1

νihi (x) , (8.2)

where λi is the multiplier associated to the i-th inequality, and νi is the multi-

plier associated to the i-th equality. The vectors λ and ν are called Lagrange

multipliers or dual variables. Hence, the Lagrangian is obtained from the

objective function augmented with weighted sums of constraint functions.
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The Lagrange dual function g : Rm×R
p → R is defined as the minimum

value of the Lagrangian over x: for λ ∈ R
m, ν ∈ R

p, i.e.,

g (λ,ν) = inf
x∈D

L (x,λ,ν) . (8.3)

When the Lagrangian is unbounded below in x, the dual function takes on

the value −∞. It is noticeable that since the dual function is the pointwise

infimum of a family of affine functions of (λ,ν), it is concave, even when the

problem (8.2) is not convex.

The Lagrangian dual problem is defined as

max g (λ,ν)

s.t. λi ≥ 0, i = 1, . . . ,m. (8.4)

Problem (8.4) is said emphdual feasible if exists a pair (λ,ν) with λ ≥ 0 and

g (λ,ν) > −∞.

Now, suppose x∗ to be the optimal solution to problem (8.1), with the pair

(λ∗,ν∗) the optimal solution to the dual problem, and with d∗ the correspond-

ing value of g, namely g (λ∗,ν∗) = d∗. We can then define the duality gap

as f0(x
∗) − d∗. It is said that the strong duality holds when the optimal

duality gap is zero.

Assuming f0, . . . , fm, h1, . . . , hp differentiable, x∗ and (λ∗,ν∗) be any pri-

mal and dual optimal points with zero duality gap, the Karush Kuhn Tucker

conditions can be expressed as:

fi (x
∗) ≤ 0, i = 1, . . . ,m

hi (x
∗) = 0, i = 1, . . . , p

λ∗
i ≥ 0, i = 1, . . . ,m

λ∗
i fi (x

∗) = 0, i = 1, . . . ,m

∇f0 (x
∗) +

m
∑

i=1

λ∗
i∇fi (x

∗) +

p
∑

i=1

ν∗i ∇fi (x
∗) = 0. (8.5)
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In (8.5), the lines, from the first to the last, denote: the inequality constraints,

the equality constraints, the non negativity condition of the Lagrange multi-

pliers associated with the inequality constraints, the slackness conditions, and

the condition that the gradient of the Lagrangian in the optimal point has to

be null.

Therefore, we can summarize saying that for any optimization problem

with differentiable objective and constraint functions for which strong duality

obtains, any pair of primal and dual optimal points must satisfy the KKT

conditions (8.5).

8.1.1 Optimal GTS Allocation for THR Maximization

Now, the optimization problem 6.1 can be written as follows,

min
α

−

N
∑

u=1

α(u)THR(u)

s.t.
N
∑

u=1

α(u) − 1 = 0,

α(u) − p(u) ≥ 0 ∀u = 1, . . . , N, (8.6)

where α =
[

α(1), α(2), . . . , α(N)
]

=
[

N
(1)
TS , N

(2)
TS , . . . , N

(N)
TS

]

/NTStot
is the op-

timization variable. It is worth noting that the condition 0 ≤ α(u) ≤ 1 is

implicitly given by the second and third line of problem 8.6.

The Lagrangian associated to problem (8.6) is defined as

L (α,λ,ν) = −

N
∑

u=1

α(u)THR(u) +

N
∑

u=1

λ(u)
(

p(u) − α(u)
)

+ ν

(

N
∑

u=1

α(u) − 1

)

,

(8.7)
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and the KKT conditions are:

∇αL = −THR(u) − λ(u) + ν = 0,

p(u) − α(u) ≤ 0,

N
∑

u=1

α(u) − 1 = 0,

λ(u) ≥ 0,

λ(u)
(

p(u) − α(u)
)

= 0. (8.8)

Since the problem 6.1 aims at THR maximization, we disregard the case α(u) =

0 because it correspond to N
(u)
TS = 0, i.e., the u-th node has no GTS allocated,

hence it cannot transmit. Therefore, we consider the case α(u) > 0 that brings

to

λ(u)
(

p(u) − α(u)
)

= 0 ⇔ α(u) = p(u), (8.9)

−THR(u) − λ(u) + ν = 0, λ(u) ≥ 0 ⇔ λ(u) = ν − THR(u) ≥ 0

⇒ ν ≥ THR(u). (8.10)

It is worth noting that Equation 8.9 takes into account the second and the last

line of conditions 8.8, while Equation 8.10 takes into account the first and the

fourth line of conditions 8.8. Exploiting the result obtained in Equation 8.9

and taking into account the third line of 8.8, we derive

N
∑

u=1

α(u) = 1, α(u) = p(u) ⇔

N
∑

u=1

p(u) = 1. (8.11)

Therefore, if we assume p(u) = 1/N , the optimal solution to problem 8.6 is

given by

α(u) = p(u) =
1

N
, α(u) =

N
(u)
TS

NTStot

⇒ N
(u)
TS =

NTStot

N
. (8.12)
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