1,318 research outputs found

    Enhancement of a Text-Independent Speaker Verification System by using Feature Combination and Parallel-Structure Classifiers

    Full text link
    Speaker Verification (SV) systems involve mainly two individual stages: feature extraction and classification. In this paper, we explore these two modules with the aim of improving the performance of a speaker verification system under noisy conditions. On the one hand, the choice of the most appropriate acoustic features is a crucial factor for performing robust speaker verification. The acoustic parameters used in the proposed system are: Mel Frequency Cepstral Coefficients (MFCC), their first and second derivatives (Deltas and Delta- Deltas), Bark Frequency Cepstral Coefficients (BFCC), Perceptual Linear Predictive (PLP), and Relative Spectral Transform - Perceptual Linear Predictive (RASTA-PLP). In this paper, a complete comparison of different combinations of the previous features is discussed. On the other hand, the major weakness of a conventional Support Vector Machine (SVM) classifier is the use of generic traditional kernel functions to compute the distances among data points. However, the kernel function of an SVM has great influence on its performance. In this work, we propose the combination of two SVM-based classifiers with different kernel functions: Linear kernel and Gaussian Radial Basis Function (RBF) kernel with a Logistic Regression (LR) classifier. The combination is carried out by means of a parallel structure approach, in which different voting rules to take the final decision are considered. Results show that significant improvement in the performance of the SV system is achieved by using the combined features with the combined classifiers either with clean speech or in the presence of noise. Finally, to enhance the system more in noisy environments, the inclusion of the multiband noise removal technique as a preprocessing stage is proposed

    Multi-Modal Biometrics: Applications, Strategies and Operations

    Get PDF
    The need for adequate attention to security of lives and properties cannot be over-emphasised. Existing approaches to security management by various agencies and sectors have focused on the use of possession (card, token) and knowledge (password, username)-based strategies which are susceptible to forgetfulness, damage, loss, theft, forgery and other activities of fraudsters. The surest and most appropriate strategy for handling these challenges is the use of naturally endowed biometrics, which are the human physiological and behavioural characteristics. This paper presents an overview of the use of biometrics for human verification and identification. The applications, methodologies, operations, integration, fusion and strategies for multi-modal biometric systems that give more secured and reliable human identity management is also presented

    Sequential decision fusion for controlled detection errors

    Get PDF
    Information fusion in biometrics has received considerable attention. The architecture proposed here is based on the sequential integration of multi-instance and multi-sample fusion schemes. This method is analytically shown to improve the performance and allow a controlled trade-off between false alarms and false rejects when the classifier decisions are statistically independent. Equations developed for detection error rates are experimentally evaluated by considering the proposed architecture for text dependent speaker verification using HMM based digit dependent speaker models. The tuning of parameters, n classifiers and m attempts/samples, is investigated and the resultant detection error trade-off performance is evaluated on individual digits. Results show that performance improvement can be achieved even for weaker classifiers (FRR-19.6%, FAR-16.7%). The architectures investigated apply to speaker verification from spoken digit strings such as credit card numbers in telephone or VOIP or internet based applications

    Model kompanzasyonlu birinci derece istatistikleri ile i-vektörlerin gürbüzlüğünün artırılması

    Get PDF
    Speaker recognition systems achieved significant improvements over the last decade, especially due to the performance of the i-vectors. Despite the achievements, mismatch between training and test data affects the recognition performance considerably. In this paper, a solution is offered to increase robustness against additive noises by inserting model compensation techniques within the i-vector extraction scheme. For stationary noises, the model compensation techniques produce highly robust systems. Parallel Model Compensation and Vector Taylor Series are considered as state-of-the-art model compensation techniques. Applying these methods to the first order statistics, a noisy total variability space training is aimed, which will reduce the mismatch resulted by additive noises. All other parts of the conventional i-vector scheme remain unchanged, such as total variability matrix training, reducing the i-vector dimensionality, scoring the i-vectors. The proposed method was tested with four different noise types with several signal to noise ratios (SNR) from -6 dB to 18 dB with 6 dB steps. High reductions in equal error rates were achieved with both methods, even at the lowest SNR levels. On average, the proposed approach produced more than 50% relative reduction in equal error rate.Konuşmacı tanıma sistemleri özellikle i-vektörlerin performansı sebebiyle son on yılda önemli gelişmeler elde etmiştir. Bu gelişmelere rağmen eğitim ve test verileri arasındaki uyumsuzluk tanıma performansını önemli ölçüde etkilemektedir. Bu çalışmada, model kompanzasyon yöntemleri i-vektör çıkarımı şemasına eklenerek toplanabilir gürültülere karşı gürbüzlüğü artıracak bir çözüm sunulmaktadır. Durağan gürültüler için model kompanzasyon teknikleri oldukça gürbüz sistemler üretir. Paralel Model Kompanzasyonu ve Vektör Taylor Serileri en gelişmiş model kompanzasyon tekniklerinden kabul edilmektedir. Bu metotlar birinci dereceden istatistiklere uygulanarak toplanabilir gürültülerden kaynaklanan uyumsuzluğu azaltacak gürültülü tüm değişkenlik uzayı eğitimi amaçlanmıştır. Tüm değişkenlik matrisin eğitimi, i-vektör boyutunun azaltılması, i-vektörlerin puanlanması gibi geleneksel i-vektör şemasının diğer tüm parçaları değişmeden kalmaktadır. Önerilen yöntem, 6 dB’lik adımlarla -6 dB’den 18 dB’ye kadar çeşitli sinyal-gürültü oranlarına (SNR) sahip dört farklı gürültü tipi ile test edilmiştir. Her iki yöntemle de en düşük SNR seviyelerinde bile eşit hata oranlarında yüksek azalmalar elde edilmiştir. Önerilen yaklaşım eşik hata oranında ortalama olarak %50’den fazla göreceli azalma sağlamıştır

    Using Gaussian Mixture Model and Partial Least Squares regression classifiers for robust speaker verification with various enhancement methods

    Get PDF
    In the presence of environmental noise, speaker verification systems inevitably see a decrease in performance. This thesis proposes the use of two parallel classifiers with several enhancement methods in order to improve the performance of the speaker verification system when noisy speech signals are used for authentication. Both classifiers are shown to receive statistically significant performance gains when signal-to-noise ratio estimation, affine transforms, and score-level fusion of features are all applied. These enhancement methods are validated in a large range of test conditions, from perfectly clean speech all the way down to speech where the noise is equally as loud as the speaker. After each classifier has been tuned to their best configuration, they are also fused together in different ways. In the end, the performances of the two classifiers are compared to each other and to the performances of their fusions. The fusion method where the scores of the classifiers are added together is found to be the best method
    corecore