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Abstract - Information fusion in biometrics has 

received considerable attention. The architecture 

proposed here is based on the sequential integration of 

multi-instance and multi-sample fusion schemes. This 

method is analytically shown to improve the 

performance and allow a controlled trade-off between 

false alarms and false rejects when the classifier 

decisions are statistically independent. Equations 

developed for detection error rates are experimentally 

evaluated by considering the proposed architecture for 

text dependent speaker verification using Hidden 

Markov Model (HMM) based digit dependent speaker 

models. The tuning of parameters, n classifiers and m 

attempts/samples, is investigated and the resultant 

detection error trade-off performance is evaluated on 

individual digits. Results show that performance 

improvement can be achieved even for weaker 

classifiers (FRR-19.6%, FAR-16.7%). The architectures 

investigated apply to speaker verification from spoken 

digit strings such as credit card numbers in telephone or 

VOIP or internet based applications. 

 

Keywords: Multi-instance fusion, multi-sample fusion, 

detection error trade-off, sequential decision fusion 

1 Introduction 

The major concern in a biometric verification system is its 

accuracy. One general problem of biometric system is that 

the individual samples of the same person are not 

identical for each presentation. This intra-class variability 

is caused by several reasons such as different 

environments, changing sensors or even natural biometric 

variability.  Inter-class similarity is achieved by high 

degree of identicalness of the same biometric trait 

between different persons. These limitations may lead to 

misclassification of the verification claims resulting in 

false alarms and false rejects. These two errors are 

dependent and in general it is difficult to reduce one type 

of error without increasing the other. The main focus of 

this paper is to obtain better trade-off between both the 

detection errors using information fusion techniques. 

In the context of biometrics, information fusion refers 

to the use of multiple sources of biometric information to 

obtain a decision. Such systems, known as multi-

biometric systems,  can improve the accuracy of a 

biometric system.  Based on the nature of information 

sources being consolidated, multi-biometric systems can 

be classified into 6 categories [1]: multi-sensor, multi-

algorithm, multi-instance, multi-sample, multimodal and 

hybrid.  Jain et al. performed experiments on fingerprint 

system and have show that multi-instance (two fingers) or 

multi-sample (two impressions of the same finger) fusion 

results in improved performance [2]. This paper presents 

architecture of multi-biometric system that integrates the 

multi-instance [3] and multi-sample [4] fusion schemes 

for controlling the trade-off between the detection error 

rates.  

The architectures used for integrating the fusion 

schemes could be either serial or parallel [1]. The use of 

particular type of architecture is mainly application 

dependent. The serial architecture is considered for the 

acquisition and processing of information in this paper. 

The reason/motivation for choosing this architecture is 

explained in the section 2. In a serial approach, the 

acquisition and processing of biometric samples takes 

place sequentially and so the decision outcome from one 

biometric system may affect the processing of the 

subsequent systems [1].  

In this paper, the scenarios in which the integration of 

multi-instance and multi-sample fusion schemes can be 

applied are explained in section 2. In section 3, the 

framework for the multi-instance, multi-sample and the 

proposed fusion methods is presented with theoretical 

prediction of detection error rates. The frame work is 

explained in the context of text-dependent speaker 

verification system. The methodology used for 

performance evaluation and the results obtained are 

explained in the section 4 and finally, in Section 5, a brief 

conclusion and the possible future work are presented 

 

2. Application Scenario of Multi-

instance and Multi-sample Fusion 

Schemes 

 
Most commercial applications of biometrics (for example,  
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telephone banking, access control or e-commerce) 

includes bi-factorial authentication (combination of 

knowledge and biometrics).  The client/user in these 

applications presents the biometric information of some 

specific knowledge (identification PIN/ credit card 

number/ password) to the verification system. The 

biometric characteristics extracted for verification can be 

either the user’s uniqueness in uttering the knowledge 

information, his writing style or even the way he types the 

information. The identity claim in this application 

scenario can be verified by classifying the entire 

knowledge information at once (single instance) or by 

fusing classification information from individual 

digits/characters of the knowledge information (multiple 

instances).  

With a multi-instance system, each digit/character is 

processed sequentially using a different classifier and so 

each instance has the ability to independently produce a 

decision about the user’s claim. In this approach, a 

rejection at any one of the classifier in the sequence 

results in a final decision of rejecting the identity claim. 

This fusion method efficiently reduces the false 

acceptances as it is hard for an impostor to reproduce a 

true user’s characteristics for multiple instances. 

However, there is also a possibility for a true user to get 

wrongly rejected at any stage of classification because of a 

large intra-class variation. This increases the number of 

false rejections. This approach is well suited for high 

security application scenarios, e.g., logging in as super-

user where providing access to unauthorized individuals 

is to be restricted to a minimum possible. However, this 

method is not desirable in most of the banking and point 

of service applications where a low false rejection rate 

causes greater customer convenience. 

In a traditional password based systems, the user is 

allowed with certain number of attempts/tries (usually 3 

attempts) to get verified by the system. Similar approach 

can be adopted in multi-biometric systems by considering 

repetition of samples from the same biometric 

characteristic. This method of multi-sample fusion helps 

in reducing the genuine user rejections but increases the 

false acceptances as the impostor is given additional 

chances for verification. Restricting the number of 

multiple samples to a minimum can limit increase in FAR 

to certain extent. This is because, in practice, a false 

claimant/impostor usually requires more number of 

attempts to get accepted rather than a true user who will 

be good in adapting the biometric characteristics to 

his/her own model.  

It can be noted that the multi-instance and multi-sample 

fusion schemes reduce one type of error at the cost of 

increase in the other detection error. So this paper 

presents an architecture that considers the integration of 

both multi-biometric fusion schemes to arbitrarily reduce 

both the errors. The performance of the proposed 

architecture is evaluated by verifying a user based on his 

unique speech characteristics (speaker verification).  

Typical applications of the proposed architecture using 

speaker verification includes telephone and internet 

banking, information services, security control, remote 

access to computers, telephone and internet based 

shopping, etc. However it is desirable in most of these 

applications to set the parameters, number of 

samples/attempts and the number of instances, to be used 

for verification of a specific speaker before performing 

real-world verification. This paper presents formulae in 

the next section that can be used to tune these parameters. 

 

3. Multi-biometric fusion for speaker 

verification 
 

Speaker verification is a process of making a decision to 

either accept or reject the identity claim of a speaker. The 

basic structure for a speaker verification system is 

explained in [5]. The verification decision is usually 

based on a likelihood score obtained by comparing the test 

utterance to the claimant’s model. The most commonly 

used technique to model a claimant in text-dependent 

speaker verification system is the HMM [6].   

 

3.1 Framework of the multi-instance fusion 

system 
 

An instance in the context of speech refers to text spoken 

by an individual, when modelled, has the ability to 

discriminate the speaker from others. In a text-dependent 

mode, multiple speaker specific models can be trained by 

varying the text (words or phrases). 

    

 
 

Figure 1.  Architecture for a multi-instance/ multi-

classifier fusion scheme with ‘n’ classifiers arranged 

sequentially 

 

  The architecture of multi-instance system is shown in 

Fig. 1. There is a sequential chain of 

classifiers
1C ,

2C ,
3C ,.....

nC with each classifier 

verifying an input test utterance
1X ,

2X ,
3X .....

nX  

respectively. The classifier 
iC  in this context refers to an 



HMM, modelled using the training data of the instance 

‘i’. Whenever classifier 
1iC accepts the input data

1iX , 

the control is given to acquire the input for next classifier 

in the sequence, 
iC (2 ≤ i ≤ n). This is similar to the 

application of AND logic where the final decision (d) of 

the system is to accept (d=1) the claim only if the 

decisions from individual classifiers (
1d =1, 

2d =1, 
3d =1 

.... 
nd =1) is to accept the speaker. 

   Each decision
id of a classifier is characterized by two 

error probabilities: the probability of a false acceptance, α 

and the probability of false rejection rate, ρ. Considering 

the decisions
id , i = 1, 2, ...n from each of the classifier to 

be statistically independent, the application of AND Rule 

can be used for fusing the decisions. The False 

Acceptance Rate (FAR) for the fused system is  





n

i

iComb

1

   (1) 

   To analyze the AND rule it is more convenient to work 

with the detection probability, dp = 1- ρ. The detection 

rate for the fused decision is given by 





n

i

iidCombd pp
1

, )()(       (2) 

   Considering the false acceptance rate of each classifier 

be α and the false rejection rate be ρ, the resulting FAR is 

given as 
n

Comb           (3) 

 

   Converting equation (2) into terms of False Rejection 

Rate (FRR) 

 

 12 )1...()1()1(  n

Comb  

   nComb   (when 1 )    (4) 

 

   It can be noted that the reduction in the false acceptance 

rate is multiplicative (Equation 3) while the increase in 

the false rejection rate is approximately additive 

(Equation 4) which is desirable in most of the high 

security applications. The assumption of statistically 

independent decisions here is an ideal one but by using 

speaker dependent HMM classifiers for each instance, an 

assumption of independence is likely to be good when the 

phonemes involved in the word are different and will hold 

reasonably well even when they share some phonemes but 

differ in the order in which they are put together. 

 

3.2 Framework of multi-sample fusion system 
 

The architecture of multi-sample system presented in the 

section 2 is shown in Fig. 2. This architecture is similar to 

the method proposed by Nelson and Kashi [7] on 

signature verification system. For this architecture, the 

maximum allowed number of repeated samples, m, need 

to be fixed prior based on the error rates obtained from a 

single sample system. In a multi-sample system, the 

speaker presents an input test utterance 
iX  (i=1, 2, ...m) 

and the classifier C makes a decision to either accept or 

reject the speaker.  

 
 

Figure 2. Architecture for multi-sample fusion with ‘m’ 

repetition of samples 

 

   If the claim is accepted (
id =1), the system does not go 

for another sample and the speaker is declared to be 

genuine. If the claim is rejected the speaker is allowed to 

present a repeated sample (
1iX ) of the same text. The 

number of multiple samples/attempts (‘i’) initially being 

1 adds up with every successive attempt and can be 

repeated until either the speaker is accepted or the 

number of repeated attempts reaches the maximum 

allowed (‘m'). In case the speaker fails to get verified 

within the maximum allowed attempts, the claim is 

rejected. 

For a speaker to be declared genuine, it is sufficient if 

any one sample presented to the system gets accepted and 

so an OR logic can be used for acceptance. However, the 

speaker is considered to be an impostor when all the ‘m’ 

repeated samples are rejected and so AND logic is used 

for rejection. Considering the probability of false 

acceptance and false rejection for each independent tries 

to be α and ρ respectively, the FAR and FRR for the 

fusion scheme can be given by: 

 

 mComb          (5) 
mComb            (6) 

 

   From the Equations (5) and (6) it is clear that while the 

false rejection rate decreases (since α and ρ are less than 

1), the false acceptance rate increases. In general, it 

would lead to conclusion that no significant gain could be 

achieved with multiple tries. However, the experiment 

conducted in [7] has shown that the FRR reduces 

significantly whereas the FAR increases only slightly. 

   It was shown in [8] that the control over the trade-off 

between errors achieved using cascaded multiple 

classifiers (Equations 3 and 4) get reversed for multiple 

attempts (Equations 5 and 6). 



3.3 Framework of the proposed architecture 

The proposed architecture is based on the integration of 

multi-instance and multi-sample fusion schemes. The 

integration is performed at each stage of classifier 

(instance) verification. The architecture can be explained 

based on decisions from the multi-instance and multi-

sample systems: 

a.     If the classifier decision, for the sample of an 

instance, is to accept the speaker then the sample 

for the next instance in sequence is acquired and 

processed by a different classifier  

b.     If the classifier decision, for a sample of an 

instance, is to reject the speaker then a repetition 

of sample for the same instance is acquired and 

processed by the same classifier  

The final decision of the proposed system for n number of 

classifiers (for ‘n’-instances) with each classifier allowing 

‘m’ number of multiple samples can be either to Accept or 

Reject the identity claim of the speaker. The final decision 

of the proposed system is to: 

1.  Accept - only if the speaker is accepted by all n 

classifiers in the sequence within the maximum 

number of allowed multiple attempts ‘m’. 

2.  Reject – if the speaker is not able to get accepted at 

any one of the classifier within the allowable 

number of multiple attempts ‘m’. 

The detection error rates of the proposed system can be 

obtained by using the equations (3) and (5) for false 

acceptance rate and equations (4) and (6) for false 

rejection rate.   
nm

n m )(        (7) 

                         )( mm
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   Assuming the response time for an instance verification 

to be t/n seconds, the trade-off on using ‘m’ multiple 

presentations for ‘n’ instances becomes the increase in 

total time for verification to an upper limit of ‘mt’[8]. 

However, the total verification time is often less than the 

upper limit. This is because, in general, the number of 

attempts required by a true speaker to get verified 

correctly is far less than that of an impostor. So there is a 

possibility for the true speaker to get accepted before 

reaching the maximum number of attempts and so the 

verification time at each instance is mostly less than ‘mt’. 

Further, in a sequential system, if the classifier decides to 

reject a speaker at any of the intermediate stage, the 

processing of samples for the subsequent instances does 

not take place. So in the case of a reasonably performing 

classifier, the total verification time for p number of 

instances with m attempts is less than ‘mt’ (i.e., p*m*t/n 

< mt, p<n). Hence, it can be considered that the false 

acceptance rate can be reduced arbitrarily without trading 

off the false rejection rate, at the expense of some 

increased time for a verification process. 

4. Experimental Setup 

 

4.1 Database 
 

In order to evaluate the performance of the proposed 

fusion scheme (multi-instance and multi-sample fusion) 

speech data related to multiple words/phrases with 

multiple repetitions for each word/phrase is needed. The 

database used for experiments in this paper is the CSLU 

[Centre for Spoken Language Understanding]: Speaker 

Recognition Version 1.1 database [9]. All of the data is 

collected over digital telephone lines and recorded using 

the CSLU T1 digital data collection system. The data 

recorded form each participant includes single words, 

phonetically rich sentences, digit strings, free speech, 

personal information and a mimicked sentence.  

The experiments performed on the proposed system 

require multiple instances with repetition of data for each 

instance and so the digit strings from this database are 

used.  The digit strings are sequences  of 5 digits - P (5 3 

8 2 4), Q (6 1 oh 9 7), R (4 0 7 1 3), S (2 8 3 7 6), T (1 9 

oh 5 4) and U (0 5 2 3 9). The digit strings are segmented 

into individual digits manually for 11 speakers (randomly 

selected) and speaker models are created for the digits 1, 

2, 3, 4, 5, 7 and 9. Digits 6 and 8 are discarded because of 

data insufficiency. For experiments performed, each digit 

is considered to be an instance and the repetitive sample 

is randomly picked from the remaining database. 

 

4.2 Speaker Verification parameters  

 
The performance of a speaker verification system largely 

depends on the parameters used at different stages.  

During feature extraction process, utterances are 

processed in 26 ms frames, Hamming windowed and pre-

emphasized with a coefficient of 0.97. The feature set is 

formed by Mel-frequency cepstral coefficients (MFCC). 

In training phase, Left - Right HMM models with five 

states per phoneme and three mixtures per state are 

created for each digit. A universal background model is 

used for speaker normalization and this model is adapted 

using Maximum a Posteriori (MAP) and Maximum 

Likelihood Linear Regression (MLLR). Client and 

background models have the same topology. In 

verification mode, impostor testing is done on the speech 

data from speakers other than the claimed identity. 

However, as it is a text-dependent system, the digit used 

as the input is matched to the corresponding claimed 

speaker model.  

 

4.3 Results 
 

The dataset is divided into train, tune and test subsets that 

are disjoint.  



a) Train set: This set consists of 21 utterances for 

each digit used for training a digit dependent 

HMM model. 

b) Tune set: The tune set for each digit has 35 

utterances for genuine user testing and a total of 

140 utterances (i.e., 14 utterances from each of 

10 impostors) for impostor testing. This dataset 

is used for setting the thresholds and 

determining the Equal Error Rates for each 

individual digit. 

c)     Test Set: The performance of the proposed 

system is evaluated using the test set for different 

combinations of parameters in the classifier 

architecture. This set includes 70 utterances from 

genuine speaker and 420 utterances (i.e., 42 

utterances for each of the 10 impostors) for 

testing the false acceptances of individual digits. 

 

The error rates are obtained by performing speaker 

verification tests on 11 speakers, each time choosing one 

speaker as genuine and the other 10 speakers as 

impostors. The equal error rates for the tune set are 

evaluated by setting speaker dependent thresholds for 

each digit. These thresholds are used for determining the 

detection errors for each digit on the test set. The mean 

error rates for 11 speaker tests are presented in the table 

1. The Equal Error Rate (ERR) from tune set is used to 

obtain the ideal error rates using the theoretical equations 

explained in the section 3. The test dataset is used to 

experimentally evaluate the theoretically obtained error 

rates. 

 

Multi-instance fusion experiments: 

 

The initial experiments are performed to evaluate the 

effectiveness of multi-instance fusion. The performance of 

the system is tested by progressively increasing the 

number of instances/digits used for verification. Figure 

3(a) shows the error rates obtained for the multi-instance 

 

fusion method for 11 speakers. Each curves above and 

below the zero line represent the FRR and FAR 

respectively for each speaker obtained on different digit 

combinations. 

Table 1. Error rates obtained on the tune and test datasets 

for individual digits shown with standard deviation 

 Tune Set Test Set 

Digits EER FRR FAR 

1    

2    

3    

4    

5    

7    

9    

 

There are 7 points on each curve each representing the 

number of digits used for verification. i.e., first point 

gives the mean error rates for tests on individual digits, 

second point represents the mean error rates for 2 digit 

combinations, third point is the mean error rate for tests 

on 3 digit combination and so on. The last data point on 

each curve is for the tests performed using all the digits (7 

digit combination). 

It is evident from the figure that multi-instance fusion 

results in lowering the number of false acceptances 

(curves below the ‘zero’ line) at the cost of increase in 

false rejection rate (curves below the ‘zero’ line). These 

results support the discussion in the section 3.1.  

 
Multi-sample fusion experiments: 

  

Figure 3(b) shows the FAR and FRR for multi-sample 

fusion method. The curves plotted are similar to the 

multi-instance fusion curve except that each point on the 

curve represents the number of repeated samples. 

 

 
(a)                                                                                     (b) 

Figure 3(a). Plot for detection error rates of multi-instance fusion for 11 speakers (b) Plot for detection error rates of 

multi-sample fusion for 11 speakers (FAR curves – below the ‘zero’ line, FRR curves – above the ‘zero’ line) 
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The first point represents the tests performed on each 

digit without allowing any repetition of the samples. The 

second point is for the tests performed on digits with two 

multiple samples allowed and so on up to 4 data points. 

These experiments also support the discussion given for 

multi-sample fusion schemes in section 3.2. With the 

increase in number of multiple samples used, the number 

false rejection reduces where as the false acceptance rate 

increases. 

 

Proposed multi-instance and multi-sample fusion 

experiments: 

 

The proposed architecture is based on the integration of 

multi-instance and multi-sample fusion schemes (section 

3.3). As noted from the figures 3 and 4, the performance 

improvement of the fusion schemes depends greatly on 

the individual digit classifier performance. So the analysis 

of the proposed method is carried on by selecting two 

speakers whose performance is good (speaker 2) and 

worse (speaker 9) compared to other speakers (as 

observed from the figures 3 and 4). 

Figure 5(a) and 5(b) presents the detection error rates 

for the speaker 2 and speaker 9 respectively. The figure 

shows the mean error rates obtained by tuning the 

parameters n (number of classifiers) and m (number of 

attempts). The curves in the figure represent the error 

rates for the use of multiple samples and the seven points 

on each curve represent the digit combinations increasing 

progressively from bottom right of the figure to the top 

left. The points below the line for the data point (1, 1) 

shows improved fusion performance. Examples are the 

points (2, 2), (3, 2) and (3, 3) for speaker 2 and the points 

(5, 3) and (7, 4).  

By tuning the parameters (n, m) to any value that falls 

below the area of lines for the data point (1, 1), both the 

detection error rates can be arbitrarily reduced with a 

trade-off in verification time. It is shown that there is 

potential to improve the performance of even weaker 

classifiers by combining them in this manner. The FRR 

and FAR for speaker 9 increases up to 19.6% and 16.7% 

respectively by considering 4 attempts at each of the seven 

digit classifier combination. However, further 

improvement in performance is possible by increasing the 

number of repetitions for each sample. 

 

Comparison of Ideal and Experimental Error Rates: 

 

As discussed in section 2 the proposed system requires the 

tuning of parameters (n, m) before performing real-world 

verification. This tuning is usually done by estimating the 

desired ideal FAR and ideal FRR using the equations (5) 

and (6). An analysis is done here to find whether the 

theoretically predicted ideal FAR and ideal FRR are 

statistically similar to the experimentally obtained error 

rates.  

The equations (5) and (6) are proposed assuming the 

error probabilities to be the same for individual 

classifiers. These equations can be expanded to include 

different error rates for each classifier. 

 

nideal mmm  *...** 21    (9) 

..)1)(1()1( 321211  mmmmmm

ideal 

m

n

m

n

mm  )1)....(1)(1(..... 121   (10) 

 

The ideal FAR and FRR are obtained by substituting the 

error rates for individual digits from the tune dataset 

(Table 1). It is to be noted that the experimentally 

obtained values here would not be exactly same as ideal 

values as there is a difference in classifiers performance 

on the tune and test data sets (Table 1).

 

 
(a)                                                                                             (b) 

 

Figure 5. Detection error rates for the proposed system - curves represent the use of multiple samples and the data points 

on each curve represent different classifier combinations for (a) speaker 2 (b) speaker 9



The bar graphs in the figure 6 show the comparison 

between the ideal and experimental detection errors for 

the speaker 9. The error rates for different classifier 

combinations with no repetition and one repetition of a 

sample are presented in the figure. As the individual error 

rates for speaker 9 are high, the ideal false acceptance 

rates reaches the upper bound (
n

n m/1...21  ) for 

classifier combinations with 3 and 4 multiple samples. 

 

 
Figure 6. Comparison of Ideal and Experimental Values 

of FRR and FAR. 

 

From the bar graph it is evident that there is some 

difference between the ideal and experimental mean 

detection errors. One of the predicted reasons for this 

difference might be that the some of the classifier 

decisions may be statistically dependent (and correlated) 

and so the error probabilities may be larger or smaller 

than the expressions in Equations (7) and (8) for 

statistically independent classifier decisions [10, 11]. The 

input data presented at each classifier may be correlated 

even though the text is different [12].  

Correlation coefficients are calculated by first finding 

the degree of dependence between the decisions. The 

approach used here is based on Bahadur-Lazarsfeld 

expansion [11]. Figure 7(a) and 7(b) show the histogram 

of the correlation coefficient for true acceptance rate 

(TAR) and false acceptance rate (FAR) respectively for 

speaker 9. It is evident from the figure that the classifier 

decisions are correlated and further the correlation 

between the classifier decisions is less for impostor testing 

than genuine testing for speaker 9. 

Kai et al. [13] explored classifier selection (selecting a 

subset of classifiers from a larger set) methods to achieve 

optimal performance using correlation analysis. It is 

possible to adapt this methodology for finding the optimal 

set of classifiers, in this case best set of digits, specific to a 

speaker for performance enhancement. Methods for 

modelling the dependencies between the classifier 

decisions and the classifier subset selection for optimal 

performance will be explored in future. 

 

5. Conclusion and Future Work 
 

This work demonstrates that  the proposed sequential 

decision fusion system can be effectively used to control 

the detection errors. This framework of multiple sample 

and multiple instance combination of classifiers is 

analytically and experimentally evaluated using a text-

dependent speaker verification system. It is shown that 

there is potential to improve the performance of weaker 

classifiers by combining them in this manner. This work 

also demonstrates that superior performance can be 

obtained despite the seemingly ideal assumption that 

classifiers make uncorrelated decisions. Though analysis 

here is done based on speech modality, the framework can 

be applied to handwriting, key stroke dynamics and other 

modal characteristics. 

 

 
(a)                                                                      (b) 

 

Figure 7: Histograms for correlation coefficients between two classifier decisions for (a) genuine user testing (b) impostor 

testing



Future work will also consider the modelling of 

adaptation in repetitive samples and use this information 

for impostor detection. The role of statistical dependence 

and correlation between the classifier decisions will be 

investigated. Further, methods to obtain statistically 

independent information for classification will also be 

explored. 
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