1,391 research outputs found

    Approximation and Relaxation Approaches for Parallel and Distributed Machine Learning

    Get PDF
    Large scale machine learning requires tradeoffs. Commonly this tradeoff has led practitioners to choose simpler, less powerful models, e.g. linear models, in order to process more training examples in a limited time. In this work, we introduce parallelism to the training of non-linear models by leveraging a different tradeoff--approximation. We demonstrate various techniques by which non-linear models can be made amenable to larger data sets and significantly more training parallelism by strategically introducing approximation in certain optimization steps. For gradient boosted regression tree ensembles, we replace precise selection of tree splits with a coarse-grained, approximate split selection, yielding both faster sequential training and a significant increase in parallelism, in the distributed setting in particular. For metric learning with nearest neighbor classification, rather than explicitly train a neighborhood structure we leverage the implicit neighborhood structure induced by task-specific random forest classifiers, yielding a highly parallel method for metric learning. For support vector machines, we follow existing work to learn a reduced basis set with extremely high parallelism, particularly on GPUs, via existing linear algebra libraries. We believe these optimization tradeoffs are widely applicable wherever machine learning is put in practice in large scale settings. By carefully introducing approximation, we also introduce significantly higher parallelism and consequently can process more training examples for more iterations than competing exact methods. While seemingly learning the model with less precision, this tradeoff often yields noticeably higher accuracy under a restricted training time budget

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    A Dependable Hybrid Machine Learning Model for Network Intrusion Detection

    Full text link
    Network intrusion detection systems (NIDSs) play an important role in computer network security. There are several detection mechanisms where anomaly-based automated detection outperforms others significantly. Amid the sophistication and growing number of attacks, dealing with large amounts of data is a recognized issue in the development of anomaly-based NIDS. However, do current models meet the needs of today's networks in terms of required accuracy and dependability? In this research, we propose a new hybrid model that combines machine learning and deep learning to increase detection rates while securing dependability. Our proposed method ensures efficient pre-processing by combining SMOTE for data balancing and XGBoost for feature selection. We compared our developed method to various machine learning and deep learning algorithms to find a more efficient algorithm to implement in the pipeline. Furthermore, we chose the most effective model for network intrusion based on a set of benchmarked performance analysis criteria. Our method produces excellent results when tested on two datasets, KDDCUP'99 and CIC-MalMem-2022, with an accuracy of 99.99% and 100% for KDDCUP'99 and CIC-MalMem-2022, respectively, and no overfitting or Type-1 and Type-2 issues.Comment: Accepted in the Journal of Information Security and Applications (Scopus, Web of Science (SCIE) Journal, Quartile: Q1, Site Score: 7.6, Impact Factor: 4.96) on 7 December 202

    Using Artificial Intelligence to Predict the Discharge Performance of Cathode Materials for Lithium-ion Batteries Applications

    Get PDF
    A comprehensive understanding of the composition-structure-property relationships for doped cathode materials used in lithium-ion batteries remains lacking which delays the progress of developing new cathode materials. This thesis proposes that machine learning (ML) techniques can be used to predict the discharge capacities of the cathode materials whilst revealing these underlying relationships. To achieve this, the data for three different doped cathodes are curated from the publications, namely, the doped spinel cathode, LiMxMn2−xO4, the M-doped nickel- cobalt-manganese layered cathode, LiNixCoyMnzM1−x−y−zO2, and the carbon -coated and doped olivine cathode, C/LiM1M2PO4 (M1, M2 denote different metal ions). Several linear and non-linear ML models are trained with the data and compared for the power of predicting initial and higher cycle discharge capacity. Gradient boosting models have shown the best prediction power for predicting the initial and 20th cycle end discharge capacity of 102 doped spinel cathode and the initial and 50th cycle discharge capacity of 168 doped nickel-cobalt-manganese layered cathodes. For the doped spinel cathode, higher discharge capacities at both cycles can be achieved through increasing the material formula mass, reducing the crystal lattice constant and using dopants with smaller electronegativity. For the doped layered cathodes, it is revealed that the higher lithium content, lower formula molar mass, small doping content and doped with low electronegativity dopant are more likely to possess greater capacities at both cycles. Bayesian ridge regression and gradient boosting model are shown to have the highest prediction power over the initial and the 20th cycle discharge capacity of carbon-coated and doped olivine cathode. In addition, the olivine systems with lower dopant content, higher base-metal content and smaller unit cells are shown to be more likely to possess higher capacities at both cycles. Finally, future research directions are presented including the suggestion of involving other new input variables and using principal component analysis and feature selection algorithms to use to improve the model performance

    Vertical Federated Learning

    Full text link
    Vertical Federated Learning (VFL) is a federated learning setting where multiple parties with different features about the same set of users jointly train machine learning models without exposing their raw data or model parameters. Motivated by the rapid growth in VFL research and real-world applications, we provide a comprehensive review of the concept and algorithms of VFL, as well as current advances and challenges in various aspects, including effectiveness, efficiency, and privacy. We provide an exhaustive categorization for VFL settings and privacy-preserving protocols and comprehensively analyze the privacy attacks and defense strategies for each protocol. In the end, we propose a unified framework, termed VFLow, which considers the VFL problem under communication, computation, privacy, and effectiveness constraints. Finally, we review the most recent advances in industrial applications, highlighting open challenges and future directions for VFL

    Impacts of DEM Type and Resolution on Deep Learning-Based Flood Inundation Mapping

    Full text link
    This paper presents a comprehensive study focusing on the influence of DEM type and spatial resolution on the accuracy of flood inundation prediction. The research employs a state-of-the-art deep learning method using a 1D convolutional neural network (CNN). The CNN-based method employs training input data in the form of synthetic hydrographs, along with target data represented by water depth obtained utilizing a 2D hydrodynamic model, LISFLOOD-FP. The performance of the trained CNN models is then evaluated and compared with the observed flood event. This study examines the use of digital surface models (DSMs) and digital terrain models (DTMs) derived from a LIDAR-based 1m DTM, with resolutions ranging from 15 to 30 meters. The proposed methodology is implemented and evaluated in a well-established benchmark location in Carlisle, UK. The paper also discusses the applicability of the methodology to address the challenges encountered in a data-scarce flood-prone region, exemplified by Pakistan. The study found that DTM performs better than DSM at lower resolutions. Using a 30m DTM improved flood depth prediction accuracy by about 21% during the peak stage. Increasing the resolution to 15m increased RMSE and overlap index by at least 50% and 20% across all flood phases. The study demonstrates that while coarser resolution may impact the accuracy of the CNN model, it remains a viable option for rapid flood prediction compared to hydrodynamic modeling approaches

    DEVELOPMENT OF FORECASTING AND SCHEDULING METHODS AND DATA ANALYTICS BASED CONTROLS FOR SMART LOADS IN RESIDENTIAL BUILDINGS.

    Get PDF
    DEVELOPMENT OF FORECASTING AND SCHEDULING METHODS AND DATA ANALYTICS BASED CONTROLS FOR SMART LOADS IN RESIDENTIAL BUILDINGS
    • …
    corecore