376 research outputs found

    Minimizing information asymmetry interference using optimal channel assignment strategy in wireless mesh networks

    Get PDF
    Multi-radio multi-channel wireless mesh networks (MRMC-WMNs) in recent years are considered as the prioritized choice for users due to its low cost and reliability. MRMCWMNs is recently been deployed widely across the world but still these kinds of networks face interference problems among WMN links. One of the well-known interference issue is information asymmetry (IA). In case of information asymmetry interference the source mesh nodes of different mesh links cannot sense each other before transmitting data on the same frequency channel. This non-coordination leads to data collision and packet loss of data flow and hence degrades the network capacity. To maximize the MRMC-WMN capacity and minimize IA interference, various schemes for optimal channel assignment have been proposed already. In this research a novel and near-optimal channel assignment model called Information Asymmetry Minimization (IAM) model is proposed based on integer linear programming. The proposed IAM model optimally assigns orthogonal or non-overlapping channels from IEEE 802.11b technology to various MRMC-WMN links. Through extensive simulations we show that our proposed model gives 28.31% network aggregate network capacity improvement over the existing channel assignment model

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively

    Investigation of enhanced double weight code in point to point access networks

    Get PDF
    © 2020 Published under licence by IOP Publishing Ltd. In this paper, an investigation and evaluation to enhanced double weight (EDW) code is performed, a new technique for code structuring and building using modified arithmetical model has been given for the code in place of employing previous technique based on Trial Inspections. Innovative design has been employed for the code into P2P networks using diverse weighted EDW code to be fitting into optical CDMA relevance applications. A new developed relation for EDW code is presented, the relation is based on studying and experimenting the effect of input transmission power with code weight, and the relation developed using numerical analysis method. This relation makes the estimation for the system input power needed more efficient. The results of the code has been explained by eye diagram and parametric illustrations from the simulated results. The result shows a magnificent performance of the code during high number of users and weight. On the other hand, the relation developed for power measurement helps to prevent power loss and consumption

    A Comparative Study of Asynchronous and Synchronous OCDMA Systems

    Get PDF

    PERFORMANCE ANALYSIS OF OPTICAL CDMA SYSTEM USING VC CODE FAMILY UNDER VARIOUS OPTICAL PARAMETERS

    Get PDF
    The intent of this paper is to study the performance of spectral-amplitude coding optical code-division multiple-access (OCDMA) systems using Vector Combinatorial (VC) code under various optical parameters. This code can be constructed by an algebraic way based on Euclidian vectors for any positive integer number. One of the important properties of this code is that the maximum cross-correlation is always one which means that multi-user interference (MUI) and phase induced intensity noise are reduced. Transmitter and receiver structures based on unchirped fiber Bragg grating (FBGs) using VC code and taking into account effects of the intensity, shot and thermal noise sources is demonstrated. The impact of the fiber distance effects on bit error rate (BER) is reported using a commercial optical systems simulator, virtual photonic instrument, VPITM. The VC code is compared mathematically with reported codes which use similar techniques. We analyzed and characterized the fiber link, received power, BER and channel spacing. The performance and optimization of VC code in SAC-OCDMA system is reported. By comparing the theoretical and simulation results taken from VPITM, we have demonstrated that, for a high number of users, even if data rate is higher, the effective power source is adequate when the VC is used. Also it is found that as the channel spacing width goes from very narrow to wider, the BER decreases, best performance occurs at a spacing bandwidth between 0.8 and 1 nm. We have shown that the SAC system utilizing VC code significantly improves the performance compared with the reported codes

    Variable weight spectral amplitude coding for multiservice OCDMA networks

    Get PDF
    The emergence of heterogeneous applications such as internet data, video streaming, and online gaming, brings in a demand for a network environ- ments with capability of supporting diverse Quality of Services (QoS). Prioritizing the services is essential to ensure the delivery of information is at their best. This paper proposes a new code family to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied in order to obtain the desired signal quality. The proposed variable-weight code (VW-code) is constructed based on basic multi-service (MS) code. Mathematical model is developed to for performance evaluation of VW-MS code. In addition, the properties of pro- posed code is compared with other VW-OCDMA codes. It is shown that the proposed VW-MS provide an optimal code length with minimum cross- correlation compared to other VW-codes. Performance of VW-MS designed for triple-play services operating at bit rates of 0.622, 1.25 and 2.5 Gbps is demonstrated

    A NOVEL CONSTRUCTION OF VECTOR COMBINATORIAL (VC) CODE FAMILIES AND DETECTION SCHEME FOR SAC OCDMA SYSTEMS

    Get PDF
    There has been growing interests in using optical code division multiple access (OCDMA) systems for the next generation high-speed optical fiber networks. The advantage of spectral amplitude coding (SAC-OCDMA) over conventional OCDMA systems is that, when using appropriate detection technique, the multiple access interference (MAI) can totally be canceled. The motivation of this research is to develop new code families to enhance the overall performance of optical OCDMA systems. Four aspects are tackled in this research. Firstly, a comprehensive discussion takes place on all important aspects of existing codes from advantages and disadvantages point of view. Two algorithms are proposed to construct several code families namely Vector Combinatorial (VC). Secondly, a new detection technique based on exclusive-OR (XOR) logic is developed and compared to the reported detection techniques. Thirdly, a software simulation for SAC OCDMA system with the VC families using a commercial optical system, Virtual Photonic Instrument, “VPITM TransmissionMaker 7.1” is conducted. Finally, an extensive investigation to study and characterize the VC-OCDMA in local area network (LAN) is conducted. For the performance analysis, the effects of phase-induced intensity noise (PIIN), shot noise, and thermal noise are considered simultaneously. The performances of the system compared to reported systems were characterized by referring to the signal to noise ratio (SNR), the bit error rate (BER) and the effective power (Psr). Numerical results show that, an acceptable BER of 10−9 was achieved by the VC codes with 120 active users while a much better performance can be achieved when the effective received power Psr > -26 dBm. In particular, the BER can be significantly improved when the VC optimal channel spacing width is carefully selected; best performance occurs at a spacing bandwidth between 0.8 and 1 nm. The simulation results indicate that VC code has a superior performance compared to other reported codes for the same transmission quality. It is also found that for a transmitted power at 0 dBm, the BER specified by eye diagrams patterns are 10-14 and 10-5 for VC and Modified Quadratic Congruence (MQC) codes respectively

    Development of Zero Cross Correlation-Double Weight Code for Optical CDMA

    Get PDF
    Optical fibers are very attractive communication media if compared to the conventional guided media like twisted wire pairs and coaxial cables since they offer large bandwidth and low attenuation. Hence, by utilizing optical fibers as the media of communication links, more advantages can be obtained if compared to traditional media. The three major multiple access for optical networks are Time Division Multiple Accees (TDMA), Frequency Division Multiple Access (FDMA) and Code Division Multiple Access (CDMA). OCDMA has advantages over TDMA and FDMA because first of all it makes efficient use of communication media by allowing asynchronous access to each user. Second no scheduling is required in CDMA and new users can easily be added to the networks. The Optical Code Division Multiple Access (OCDMA) suffers from various types of noise but the dominant source of noise is Multiple Access Interference (MAl). Therefore, the cancellation or suppression of MAl is a big problem in OCDMA. Much OCDMA codes have been designed to reduce the MAl and to enhance the performance of the system. This thesis concentrates on how to reduce the MAl in OCDMA. In this thesis Zero Cross Correlation-Double Weight Code (ZCC-DW) is proposed based on Modified Double Weight Code (MDW) for OCDMA system to decrease the cross correlation value from one to zero hence the Multiple Access Interference (MAl) should be decrease and this will improve the system performance. After completion the code construction techniques a simulation is used to study the performance of ZCC-DW code. The performance is carried out to various data rate and various optical fiber lengths to calculate the Bit Error Rate (BER) which it used to evaluate the code performance. Lastly Comparisons are then made between Direct Detection (ZCC-DW code Detection) and Hybrid Detection (MDW code Detection). Direct Detection Technique offers better result than Hybrid Detection Technique
    corecore