1,134 research outputs found

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Speed-Aware Routing for UAV Ad-Hoc Networks

    Get PDF
    In this paper we examine mobile ad-hoc networks (MANET) composed by unmanned aerial vehicles (UAVs). Due to the high-mobility of the nodes, these networks are very dynamic and the existing routing protocols partly fail to provide a reliable communication. We present Predictive-OLSR an extension to the Optimized Link-State Routing (OLSR) protocol: it enables efficient routing in very dynamic conditions. The key idea is to exploit GPS information to aid the routing protocol. Predictive-OLSR weights the expected transmission count (ETX) metric, taking into account the relative speed between the nodes. We provide numerical results obtained by a MAC-layer emulator that integrates a flight simulator to reproduce realistic flight conditions. These numerical results show that Predictive-OLSR significantly outperforms OLSR and BABEL, providing a reliable communication even in very dynamic conditions.Comment: submitted to GlobeCom'13 Workshop - Wi-UA

    Easy Wireless: broadband ad-hoc networking for emergency services

    Get PDF
    Wireless ad-hoc networks will enable emergency services to continuously overview and act upon the actual status of the situation by retrieving and exchanging detailed up-to-date information between the rescue workers. Deployment of high-bandwidth, robust, self-organising ad-hoc networks will enable quicker response to typical what/where/when questions, than the more vulnerable low-bandwidth communication networks currently in use. This paper addresses a number of results of the Easy Wireless project that enable high bandwidth robust ad-hoc networking. Most of the concepts presented here have been experimentally verified and/or prototyped

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    A Survey on Multihop Ad Hoc Networks for Disaster Response Scenarios

    Get PDF
    Disastrous events are one of the most challenging applications of multihop ad hoc networks due to possible damages of existing telecommunication infrastructure.The deployed cellular communication infrastructure might be partially or completely destroyed after a natural disaster. Multihop ad hoc communication is an interesting alternative to deal with the lack of communications in disaster scenarios. They have evolved since their origin, leading to differentad hoc paradigms such as MANETs, VANETs, DTNs, or WSNs.This paper presents a survey on multihop ad hoc network paradigms for disaster scenarios.It highlights their applicability to important tasks in disaster relief operations. More specifically, the paper reviews the main work found in the literature, which employed ad hoc networks in disaster scenarios.In addition, it discusses the open challenges and the future research directions for each different ad hoc paradigm
    corecore