5,543 research outputs found

    Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time

    Get PDF
    Designed by biological and social evolutionary pressures, facial expressions of emotion comprise specific facial movements to support a near-optimal system of signaling and decoding. Although highly dynamical, little is known about the form and function of facial expression temporal dynamics. Do facial expressions transmit diagnostic signals simultaneously to optimize categorization of the six classic emotions, or sequentially to support a more complex communication system of successive categorizations over time? Our data support the latter. Using a combination of perceptual expectation modeling, information theory, and Bayesian classifiers, we show that dynamic facial expressions of emotion transmit an evolving hierarchy of “biologically basic to socially specific” information over time. Early in the signaling dynamics, facial expressions systematically transmit few, biologically rooted face signals supporting the categorization of fewer elementary categories (e.g., approach/avoidance). Later transmissions comprise more complex signals that support categorization of a larger number of socially specific categories (i.e., the six classic emotions). Here, we show that dynamic facial expressions of emotion provide a sophisticated signaling system, questioning the widely accepted notion that emotion communication is comprised of six basic (i.e., psychologically irreducible) categories, and instead suggesting four

    Purification-based metric to measure the distance between quantum states and processes

    Get PDF
    In this work we study the properties of an purification-based entropic metric for measuring the distance between both quantum states and quantum processes. This metric is defined as the square root of the entropy of the average of two purifications of mixed quantum states which maximize the overlap between the purified states. We analyze this metric and show that it satisfies many appealing properties, which suggest this metric is an interesting proposal for theoretical and experimental applications of quantum information.Comment: 11 pages, 2 figures. arXiv admin note: text overlap with arXiv:quant-ph/0408063, arXiv:1107.1732 by other author

    Complexity Analysis of Spontaneous Brain Activity in Attention-Deficit/Hyperactivity Disorder: Diagnostic Implications

    Get PDF
    Background: Attention-deficit/hyperactivity disorder (ADHD) is defined as the most common neurobehavioral disorder of childhood, but an objective diagnostic test is not available yet to date. Neurophychological, neuroimaging, and neurophysiological research offer ample evidence of brain and behavioral dysfunctions in ADHD, but these findings have not been useful as a diagnostic test. Methods: Whole-head magnetoencephalographic recordings were obtained from 14 diagnosed ADHD patients and 14 healthy children during resting conditions. Lempel-Ziv complexity (LZC) values were obtained for each channel and child and averaged in five sensor groups: anterior, central, left lateral, right lateral, and posterior. Results: Lempel-Ziv complexity scores were significantly higher in control subjects, with the maximum value in anterior region. Combining age and anterior complexity values allowed the correct classification of ADHD patients and control subjects with a 93% sensitivity and 79% specificity. Control subjects showed an age-related monotonic increase of LZC scores in all sensor groups, while children with ADHD exhibited a nonsignificant tendency toward decreased LZC scores. The age-related divergence resulted in a 100% specificity in children older than 9 years. Conclusions: Results support the role of a frontal hypoactivity in the diagnosis of ADHD. Moreover, the age-related divergence of complexity scores between ADHD patients and control subjects might reflect distinctive developmental trajectories. This interpretation of our results is in agreement with recent investigations reporting a delay of cortical maturation in the prefrontal corte

    Entropy Measures in Machine Fault Diagnosis: Insights and Applications

    Get PDF
    Entropy, as a complexity measure, has been widely applied for time series analysis. One preeminent example is the design of machine condition monitoring and industrial fault diagnostic systems. The occurrence of failures in a machine will typically lead to non-linear characteristics in the measurements, caused by instantaneous variations, which can increase the complexity in the system response. Entropy measures are suitable to quantify such dynamic changes in the underlying process, distinguishing between different system conditions. However, notions of entropy are defined differently in various contexts (e.g., information theory and dynamical systems theory), which may confound researchers in the applied sciences. In this paper, we have systematically reviewed the theoretical development of some fundamental entropy measures and clarified the relations among them. Then, typical entropy-based applications of machine fault diagnostic systems are summarized. Further, insights into possible applications of the entropy measures are explained, as to where and how these measures can be useful towards future data-driven fault diagnosis methodologies. Finally, potential research trends in this area are discussed, with the intent of improving online entropy estimation and expanding its applicability to a wider range of intelligent fault diagnostic systems

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page
    • 

    corecore