7 research outputs found

    Enhanced RFB method

    Get PDF
    The residual-free bubble method (RFB) is a parameter-free stable finite element method that has been applied successfully to solve a wide range of boundary-value problems presenting multiple-scale behavior. If some local features of the solution are known a-priori, the RFB finite element space approximation properties can be increased by enriching it on some specific edges of the partition (see[7]). Based on such idea, we define and analyse the enhanced residual-free bubbles method for the solution of convection-dominated convection-diffusion problems in 2-D. Our a-priori analysis enlightens the limitations of the RFB method and the superior global convergence properties of the new method. The theoretical results are supported by extensive numerical experimentation.\ud \ud The first author acknowledges the financial support of INdAM and EPSR

    Stabilization arising from PGEM : a review and further developments

    Get PDF
    The aim of this paper is twofold. First, we review the recent Petrov-Galerkin enriched method (PGEM) to stabilize numerical solutions of BVP's in primal and mixed forms. Then, we extend such enrichment technique to a mixed singularly perturbed problem, namely, the generalized Stokes problem, and focus on a stabilized finite element method arising in a natural way after performing static condensation. The resulting stabilized method is shown to lead to optimal convergences, and afterward, it is numerically validated

    Stabilized finite element methods based on multiscale enrichment for the Stokes problem

    Get PDF
    This work concerns the development of stabilized finite element methods for the Stokes problem considering nonstable different (or equal) order of velocity and pressure interpolations. The approach is based on the enrichment of the standard polynomial space for the velocity component with multiscale functions which no longer vanish on the element boundary. On the other hand, since the test function space is enriched with bubble-like functions, a Petrov--Galerkin approach is employed. We use such a strategy to propose stable variational formulations for continuous piecewise linear in velocity and pressure and for piecewise linear/piecewise constant interpolation pairs. Optimal order convergence results are derived and numerical tests validate the proposed methods

    A novel bubble function scheme for the finite element solution of engineering flow problems

    Get PDF
    This thesis is devoted to the study of some difficulties of practical implementation of finite element solution of differential equations within the context of multi-scale engineering flow problems. In particular, stabilized finite elements and issues associated with computer implementation of these schemes are discussed and a novel technique towards practical implementation of such schemes is presented. The idea behind this novel technique is to introduce elemental shape functions of the polynomial forms that acquire higher degrees and are optimized at the element level, using the least squares minimization of the residual. This technique provides a practical scheme that improves the accuracy of the finite element solution while using crude discretization. The method of residual free bubble functions is the point of our departure. [Continues.

    Iterative methods for heterogeneous media

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore