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Abstract 

This thesis is devoted to the study of some difficulties of practical implementation of 

finite element solution of differential equations within the context of multi-scale 

engineering flow problems. In particular, stabilized finite elements and issues 

associated with computer implementation of these schemes are discussed and a novel 

technique towards practical implementation of such schemes is presented. The idea 

behind this novel technique is to introduce elemental shape functions of the 

polynomial forms that acquire higher degrees and are optimized at the element level, 

using the least squares minimization of the residual. This technique provides a 

practical scheme that improves the accuracy of the finite element solution while using 

crude discretization. The method of residual free bubble functions is the point of our 

departure. 

Residual free bubble functions yield accurate solutions for the problems of different 

scales of amplitude in the variations of the field unknown. These functions, however, 

are not readily derivable and due to their complex forms, they are not usually 

significant from a practical point of view. Computation of a residual free bubble 

function involves the solution of the local residual differential equations, which can be 

as difficult as the solution of the original problem. These will result in lack of 

flexibility or impracticality, especially in higher dimensions and non-symmetric 

problems. 

We benefit from the advantages of polynomials that are continuous, differentiable and 

easily integrated and derive practical polynomial bubble functions that approximate 

the residual free bubble functions, using the method of least squares minimization. 

We employ our technique to solve several problems and show its practicality and 

superiority over the classical linear finite elements. 
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Chapter 1 

Introduction 

Modelling the real world phenomena, in order to study and control them, requires 

mathematical formulation of their governing rules. This formulation is usually 

expressed in terms of Differential equations. Trying to solve these equations is trying 

to discover the hidden patterns ruling these phenomena, which results in control or in 

prediction as required. Patterns, however, are numerous and the solutions are rare. 

Solutions to the differential equations exist only for a limited number of equations and 

these solutions may not be readily applicable. 

Methods of the treatment of differential equations usually fall in one of the following 

groups: analytical or exact solutions, approximate methods and numerical methods. 

Exact analytical methods solve a given differential equation strongly and present a 

closed form of the solution. This means that the solution satisfies the equation with no 

residuals within its definition domain and is expressed explicitly. Approximation 

methods are those methods that locally or globally approximate the solution. These 

methods provide a simple explicit form for the solution of the equation; however, a 

residual of the approximation is generated. Numerical methods are methods that 

obtain the global solution, based on joining the local point-wise solutions. A 

numerical solution of the differential equations is usually obtained from discretization 

of the problem domain and solving a set of local problems that will provide recursi ve 

formulas. 
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Chapter 1 

Several approaches there also exist that employ a combination of two or all of the 

above-mentioned methods to study certain problems. 

The method of finite elements is a powerful numerical method to solve differential 

equations. This method is developed well, both in theory and techniques and is 

broadly employed to solve differential equations arising in the study of fluid 

dynamics, structure analysis, aerodynamics and so forth. This method employs a 

systematic procedure to solve the given problem and acquires considerable power and 

flexibility especially in coping with the complex geometry domains or problems with 

different degrees of desired precision over the entire domain or the so called multi­

scale problems. The range of problems suitable for analysis by finite element method 

is clearly large. 

A brief anatomy of the method is as follows: Consider a phenomenon expressed in 

teims of governing differential equation(s) over a prescribed domain. The first step in 

the finite elements solution of a differential equation is to perform a domain 

discretization. At this stage, the problem domain is discretized into a finite number of 

sub-domains (element domains). The second step is to assume an approximation of 

the solution that is written in a linear combination of a set of basis functions. These 

basis functions come from finite dimensional spaces associated to each element 

domain and have small supports. The next step is to insert this approximation into the 

weak form of the problem, the so-called weighted residual statement, and to force this 

residual to be zero in an average sense. Making the weighted residual zero, gi ves rise 

to a local system of linear equations. Performing the assembly process of the local 

equations along with the imposition of initial and boundary conditions and removal of 

the redundant equations, solves the global system of the equations that find the values 

of the unknown function at the selected element nodes. In simple words, the method 

2 
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of finite elements is based on the reduction of an initiallboundary value differential 

equation to a matrix system of equations, which its solution provides the estimations 

to the solution at selected nodes. 

1.1 Difficulties and common approaches with the exercise of finite 

element schemes 

An important challenge in the exercise of a finite element procedure is to produce a 

stable numerical scheme, which prevents the errors in input data and intermediate 

approximations to accumulate and cause a meaningless solution. A discretization 

error, on the other hand, is likely to be generated due to the geometrical complexities. 

In order to overcome these difficulties, several techniques are suggested and 

employed in the literature. All these techniques are based on the ground of one Of both 

of the following: refining element domains (h-version finite element) or changing 

order of base functions (p-version finite element). In the h-version, the computational 

grid is refined at each mesh refinement level to improve the accuracy of 

approximation. In the p-version, however, the accuracy is improved using higher 

order elements. In addition, alterations to the h-version and p-version finite elements 

are used extensively, to approach several special cases. 

Revisions to the p-version finite elements vary from use of higher order polynomials 

or sophisticated shape functions such as exponential or hyper-trigonometric functions, 

to modifying the weighted residual statements with upwinding [26]. 

One efficient method to achieve higher order shape functions is to introduce the 

hierarchical shape functions that contribute to the approximation by providing higher 

order refinements whereas the successive coefficients of the added terms are less 

important resulting in a larger tolerance of numerical inaccuracy [34]. 
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Another selection is to assume a multi-component element consisting of standard 

approximation plus an additional part. The additional part is to be found exactly from 

the solution of the local residual equation generated by replacement of the linear part 

into the original equation. This approach is called enriched finite element method, 

which gives rise to the introduction of multi-scale functions and the residual free 

bubble functions. The method improves accuracy of the finite element solution, 

enriching the standard Galerkin approximation, and finds a stable and coarse-mesh 

accurate finite element discretization. 

1.2 Notable examples of ongoing research: Multi-scale problems 

Quantitative analysis of multi-scale problems has become an important issue in the 

engineering flow processes. Mathematical models of such problems are often 

expressed in terms of complex PDEs and their solution requires sophisticated 

numerical techniques. The basic concept of a multi-scale problem is explained below 

via comparisons between the free and porous flow regimes with different physical 

properties. A thorough analysis can be found in [22) and references therein. 

Figure 1.1 shows a schematic diagram of a laminar plug flow where the domain is 

open to flow and its walls are not permeable). The flow is subject to perfect slip wall 

condition. In this case no stress is carried by the fluid. Such a free flow regime can be 

described mathematically by the use of Euler equations. 
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v=O 
~ ~ ~ 
~ ~ ~ 
~ ~ ~ 
~ ~ ~ 

v=O 

Figure 1.1 

Plug flow r~gime (no slip wall) 

In figure 1.2 the laminar free flow regime where the flow is subject to no slip wall 

conditions is shown. In this case the fluid carries all of the stress and becomes 

deformed. This flow regime can be described by Stokes or Navier-Stokes equation 

(depending on the Reynolds number). 

}'igure 1.2 

Velocity profile of Free flow regime (no permeability) 

Figure 1.3 shows the physical features of a porous flow regime with high permeability 

(i.e. the domain consists of large pores). In this case the velocity at the walls is zero 

(i.e. no slip wall conditions). The fluid no longer carries all of the stress and some is 

borne by the porous medium. Such a porous flow phenomenon can be described 

mathematically by the Brinkman equation. 

Figure 1.3 

Porous flow regime (high permeability) 
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Figure 1.4 gives a representation of the physical aspects of a porous flow regime with 

very low permeability (i.e. the porous medium is dense and has very fme pores). In 

this case a slip wall condition is established and the velocity has a flat profile across 

the porous material. The stress is now carried completely by the solid matrix. Such a 

porous flow phenomenon can be described mathematically by the Darcy equation. 

Note that although the velocity profile in this case will be similar to the one shown in 

figure 1.1 the mathematical representation of flow in the two cases will be very 

different. This is because the fluid viscosity plays no role in the free plug flow case 

and in contrast has a significant effect on the nature of a low permeability flow 

system 

-
Figure 1.4 

Porous flow regime (Iow permeability) 

In figure 1.5 the typical velocity profile in a porous flow system where the 

permeability is high is shown. Amongst all of the regimes described here only the 

latter case can be regarded as a multi-scale flow problem. TIlls is because the flow 

pattern at layers near the wall is very different in character to the established flow 

pattern within the domain. Inside the domain the profile will be plug flow but near the 

walls it will change very abruptly to a parabolic type. 

Although Brinkrnan equation is able to characterize the flow in highly permeable 

porous medium with low Reynolds numbers the multi-scale nature of the flow makes 
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it necessary to use excessive domain discretization near the walls to obtain a good 

solution. 

Figure 1.5 

Velocity profile in a Porous flow regime with high permeability 

The standard Galerkin fmite element method is not a strong enough approach for 

transport models displaying multi-scale behaviour [IOJ. For these problems, a 

particular class of sub-grid scale models are proposed which are known as multi-scale 

methods [18]. 

This is mainly due to the fact that the representation of all physical scales needs a high 

level of discretization which is a common difficulty with these problems. If the 

discretization at a coarse level ignores the fine scale then the solution will be unstable 

and inaccurate. The influence of the fme scales must be incorporated into the model. 

If the flow occurs in highly permeable porous media the thickness of the boundary 

layer decreases by reducing the permeability. The discretization level must be less 

than the boundary layer thickness to achieve stable solution [27]. This problem can be 

satisfactorily resolved by the use of higher order approximation functions. Therefore 

if the problems related to 'numerical locking' can be resolved then methods based on 

such trial functions will be the appropriate technique for multi-scale flow problems. 

Similar multi-scale behaviour can be seen in turbulent flows, large scale molecular 

dynamic simulations, weather forecasting, reaction and convection dominated 

transport problems. 
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1.3 Aim of this thesis; our approach 

The main aim of this work is to contribute to the practical implementation of the p­

version finite elements, especially within the framework of variational and multi-scale 

methods. The work is particularly concerned with the derivation of polynomial 

approximations of the residual free bubble functions. This is carried out in such a way 

that the accuracy of the solution with residual free bubble functions is not sacrificed 

by the selection of simple approximants. Indeed, several factors need to be taken into 

account, to this end. 

The exact solutions to some differential equations (if available) are expressed in terms 

of sophisticated functions. This varies from the presence of special functions (e.g. 

Airy function) to the presence of oscillations in the solution of certain equations. 

Moreover, derivation of the residual free bubble functions involves the solution of 

local differential equations that can be as difficult as the original equation in some 

occasions. Therefore, adoption of a polynomial approximation seems to be a good 

choice to overcome these difficulties. This is because families of polynomials can, 

uniformly approximate functions of certain degree of smoothness. The polynomial 

bubble, however, has the property that it vanishes at the element boundary. 

Intuitively, this property confines the approximation error to the element level only. 

The next question to be answered is that what degree polynomial to use? It is clear 

that in order to capture the sharp drops or oscil~ations in the variations of the unknown 

in the problem domain, higher order polynomials are required. However, adoption of 

the high order polynomial might result in over-smoothness and over-convergence 

where a simple approximation is able to capture the variations. This gives rise to the 

analysis of the approximation error related to the size of the element. To make a 

balance, therefore, it is required to perform a moderate mesh refinement along with 

8 
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the employment of the higher order approximation. This is to use both h-version and 

p-version finite elements at the same time. The above discussion implies that an 

optimal scheme is needed in order for an enriched finite element approximation to 

satisfy certain criteria of accuracy and practicality. The least squares polynomial 

approximation of the residual free bubble functions is a potential candidate, which 

meets the requirements of the criteria, highlighted above. In this thesis, we will 

introduce polynomials of the orders higher than the order of standard linear elements 

by them we enrich the standard finite elements. By minimizing the residual 

functional, generated from the replacement of these approximants into the original 

equation, we find the optimal polynomials that we will call them practical bubble 

functions. These practical bubble functions, along with a moderate refinement of 

computational mesh produce satisfactory results for the problems at hand. 

1.4 Structure of the thesis 

This thesis consists of five Chapters. In the introductory Chapter, we provide a brief 

background to this study and present the main motivations and issues associated with 

this work towards the justification of this research. In Chapter two, a comprehensi ve 

review of the literature is carried out. The main tools and ideas and novel techniques 

associated with the finite element solution of the engineering flow problems are 

presented and their advantages and disadvantages are counted. In Chapter three, a 

novel method for the derivation of bubble functions using the method of least squares 

is introduced, explained and tested for two-point boundary value problems and is 

compared to other existing methods. Chapter four of this thesis, studies the extension 

of the least squares bubble functions to one-dimensional time-dependent problems 

and derivation of such functions for the triangular and rectangular elements in multi-

9 
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dimensional analysis. Similar to Chapter three, Chapter four includes illustrative 

worked examples in order to demonstrate the efficiency of the suggested technique. 

Finally, in Chapter five conclusions of the present study and its possible extensions to 

obtain results that are more general and to solve more challenging and multi­

dimensional problems are discussed. The thesis also includes list of references and 

appendices of the Maple works for the derivation of the bubble functions. 

10 



Chapter 2 

Finite elements, Approximations and the Variational methods 

This Chapter is devoted to the study of the approximation methods and, in particular, 

the development of novel finite element schemes for the solution of complex 

problems. The main aim of this chapter is to review different ideas and techniques 

employed in the variational formulation of finite elements. We start from introducing 

the most essential tools and ideas in the finite element method and carry out a 

literature survey on the problems that are practically important and consider the 

difficulties associated with them. We also present the ideas behind the variational 

methods, their benefits in coping with multi-scale problems and discuss the 

implementation and limitation of these methods. 

2.1 A survey on principles of approximation and interpolation used 

in the finite element schemes 

The main aim in approximation theory is to approximate functions from certain 

infinite-dimensional spaces (primarily C{a,bj) by means of simpler functions 

generally coming from a finite-dimensional space [24]. 

The approximation space should have certain properties: 

It should be expandable to sufficiently large space to get a good approximation over 

there. On the other hand, it should be possible to get arbitrarily good approximations 

to a given function by making the dimension of approximating space sufficiently 

large, that is, the approximations should converge in some sense. Elements of the 

11 
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approximation space should be simple so that they can be easily integrated and 

differentiated. There should be a well-developed theory to facilitate the analysis of the 

resulting computational procedures. Polynomials are an ideal choice on all three 

accounts. This fact is a result of a classical theorem of Weierstrass. 

Weierstrass Approximation theorem: Let f E C[a,b]. Then for any DO there exists a 

polynomial Pn such that maxlf( t)- p( t A :5 c:, [24]. 
aStSb 

The best known method of approximation is polynomial interpolation, which consists 

of finding a polynomial pit) taking on pre-assigned values Wj at certain points tj. This 

type of interpolation is called Lagrange interpolation. The Lagrange interpolation 

problem always has a unique solution with a simple representation 

, 
p,(t)= I,llt)f(tj) (2.1) 

j::O 

where the lj are the so-called fundamental polynomials 

for further discussion, see [24]. 

2.2 Numerical Integration 

Numerical integration is the subject of approximating the value of an integral when 

the integrand is known either, as an expression, a table of values, or a computer 

subroutine and there is no straightforward method to calculate the exact value. 

One of the key steps in the finite element schemes is where the derivation of element 

matrices for higher order elements is carried out. The complexity of the functions 

under the integral sign as well as the difficulties of evaluation of the derivatives in 

distorted integration domains makes it inevitable to approximate numerical 

12 
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evaluations be used instead of the typical integrals [15]. In general, the strategy is to 

pass an approximant, say a polynomial, through the points defined by the function, 

and then integrate this polynomial approximation of the function. There exist several 

methods to do this such as midpoint method, trapezoidal method, Simpson method, 

and Newton-Cotes formulas in general. The theory of integration is a generalization 

of the theory of finite series into infinite series. The associated idea is as follows: for a 

given integral which is difficult to calculate, we restrict ourselves to the constructive 

part of the problem i.e. to the original finite summation, by which we can pass 

through to the integral formula via a formal procedure i.e. taking limit or supremum. 

This involves discretization of the integral domain, selection ·of a fast and suitable 

approximant and a method to reduce generated error. Formulation of this idea gives 

birth to the theory of quadratures. 

b " 
A classical quadrature has the form I(!) = fa f(x)dx = 2: wJ(x,) + E , in which w(x) 

i=1 

is called a weight function, the set {x;} are the abscissa or nodes, the set {w;} are the 

" weights, n is the point number and E the error term. Setting Q( f ) = 2: wJ( x; ), Q is 
j:::1 

a functional which gives an approximate value for f, where the abscissa Xi and weights 

Wi are known constants depending on n, I, w(x) and on the interval [a, hi, but 

independent off (sometimes we write Qn for an n-point formula). A fonnula is said to 

be of m-rh degree or precision if it integrates exactly all polynomials of degree m or 

less but there exist some polynomials of degree m+ 1 (and higher) that the formula is 

not exact applied to them. We set Rif)= Iif) - Qif) and call it the truncation error. A 

formula then is called to be convergent if R( f ) ~ 0 as n ~ 00. An integrand is 

called to be rapidly oscillatory if it assumes numerous (say more than ten) local 

maxima and minima over a relatively small range of integration. Functions of 

13 
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infinitely many local maxima and minima around a given point, frequently happens to 

appear in practice [15). 

If a rule has abscissa {x;}, none of which is equal to either of the end-points a or b, 

then the rule is called an open rule. Such open rule formulae can be used to evaluate 

integrals with integrands, which exhibit end-point singularities, as no function values 

are required at these points. If the end-points are included in the set of abscissa, then 

the rule is called a closed rule. Formulas in which the range of integration is 

partitioned into equal subintervals, and nodal values are predetermined, are called 

Newton-Cotes formulas [15]. The best-known examples of these integration formulas 

are: Trapezoidal Rule: 

I" b-a f( x}dx--{ f(a}+ f(b}}= 
a 2 

for fEC[a, bj and Simpson's Rule: 

I
, b-a a+b 
f( x)ix--{ f( a}+4f(-}+ f( b}} = 

a 3 2 
a<t<b. 

forfEC:[a, bj. 

For explicitly known integrands, we may use other methods to obtain a more accurate 

approximation. Such methods are called Gaussian integration methods. Remember the 

b a 

formula fa f(x)dx = L wJ(x;) + E.1t is customary to shift the integration range to [-
i=l 

1,1] by settingx=~(a(t-l}+b(t+l}}. Then we determine the n coefficients Wj 

2 

and n nodes Xj so that the formula gives exact results for polynomials of degree k as 

high as possible. Since n+n=2n is the number of coefficients of a polynomial of 

degree 2n-1, it follows that k52n-1. Gauss has shown that exactness for polynomials 

of degree not exceeding 2n-1 (instead of n-1 for predetermined nodes) can be attained, 
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and he has given the location of the Xi (the i-th zero of the Legendre polynomial Pn) 

and the coefficients Wi (which depend on n but not on /). This formula is called Gauss 

quadrature formula [15]. Gaussian quadratures are preferred to Newton-Cotes 

formulas for finite element applications because they have fewer function evaluations 

for a gi ven order. 

We will determine the parameters in the simple case of a two-term formula containing 

four unknown parameters: f. f( x) = af( x, ) + bf( x2 ). Our formula is to be valid for 

any polynomial of degree 3. Hence, it will hold if f( x) = x 3 ,J( x) = x',J( x) = x , 

andf( x)= 1: 

f( x) = x 3
: l' x 3 dx = 0 = ax; + bX; ; -, 

f(x)=x 2
: 

f( x)=x: 

f(x)=I: 

l' 2 2 2 2 
X dx=-=ax +bx ; 

-, 3 ' 2 

l' xdx = 0 = ax, +bx2 ; -, 

1'dx = 2 = a + b. -, 

We then find that 

a =b =1, 

x 2 =-x, =Jf =0.5773, 

t f( x)dx = f( -D. 5773 ) + f( 0.5733). 

It is remarkable that adding these two values of the function gives the exact value for 

the integral of any cubic polynomial over the interval from -1 to 1. 

Suppose our limit of integration are from a to b, and not -1 to 1 for which we derived 

this formula. To use the tabulated Gaussian quadrature parameters, we must change 

the interval of integration to (-1,1) by a change of variable. We replace the given 
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variable by another to which it is linearly related according to the following scheme: 

(b-a)x+b+a b-a 
If we let t = so that dl = (--)dx then: 

2 2 

fb f(l)dt=b-a11 f((b-a)x+b+a)dx. 
a 2 -I 2 

" 
As an example if I = J02 sin xdx (the exact value of I is equal to 0.1), we change the 

variable of integration to make the limits of integration (-I, I). 

Let 

1l 1l 
( -)1+-

2 2 1l 1l 1 7l1+1l 
x = ,so dx = -dl and 1=-1 sin(--~I. 

2 4 4 -I 4 

The Gaussian formula calculates the value of the new integral as a weighted sum of 

two values of the integrand, at t=-0.5773 and t=0.5773. Therefore, 

I=1l [(1.0)(sin(0.105661l)+(1.0)(sin(0.394341l)] =0.99847 and the value of the 
4 

error is 1.53 x 10-3 [15]. Gaussian quadrature can be extended beyond two terms. The 

1 a 

formula is then given by L f( x)dx = L wJ( Xi )for n points. This formula is exact 
i=1 

for polynomials of degree 2n- I or less. Moreover, by extending the method we used 

previously for the 2-point formula, for each n we obtain a system of 2n equations: 

o for k = 1,3,5'00.,211 -1 
(2.4) 

2 

k + 1 
for k = 0,2,4'00.211 

It turns out that the ti for a given n are the roots of the 11th-degree Legendre 

polynomial. The Legendre polynomials are defined by recursion: 

(n + 1 )La+l( x)-(211 + l)xLa( x)+ nLn_d x) = Owith 

3 1 A L,,( x)= I,Ld x) = x,L,( X )=_x2 
--, and zeros at ± - = ±0.5773. 

223 
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The following table [15] lists the zeros of Legendre polynomials up to degree 5, 

giving values that we need for Gaussian quadratures where the equivalent polynomial 

is up to degree 9. For example, LJ(x) has zeros at x=O, +0.77459667, -0.77459667. 

Number of terms Values oft Weighting factor Valid to degree 

2 -0.57735027 1.0 3 
0.57735027 1.0 

3 -0.77459667 0.55555555 5 
0.0 0.88888889 
0.77459667 0.55555555 

4 -0.86113631 0.34785485 7 
-0.33998104 0.65121451 
0.33998104 0.65121451 
0.86113631 0.34785485 

5 -0.90617985 0.23692689 9 
-0.53846931 0.47862867 
0.0 0.56888889 
0.53846931 0.47862867 
0.90617985 0.23692689 

Table 2.1 
Gauss quadrature nodes and weights 

The Legendre polynomials are orthogonal over the interval [-1,1}. That is, 

1

=0 if n '# m; 

f>.( x)dx 

>0 if n=m. 

Any polynomial of degree n can be written as a sum of the Legendre 

n 

polynomials:Pn ( x)= Lc,LJ x).Thenroots of L.( x)=O lie in the interval [-1,1]. 
i=O 

It is a desired property of Gaussian quadratures that are well applicable to evaluate 

multiple integrals numerically, within the finite element packages. We consider first 

the case when the limits of integration are constant. 

17 
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For a multiple integral over the domain [-l,l]x[-l,l]x ... x[-l,l] we shall write: 

I = I' I' ···1' f(x, y, ... , z)dxdydz = I' (I' (···(1' f(x, y, ... , z)dx»dy ... )dz . 
-I -I -I -I -1 -I 

Applying one dimensional Gaussian rule to each integral we find the approximate 

n m 1 

valuel '= LL ... Laiaj"".akf( Xi.y j •••• 'Zk ), where n. rn, .... I are the number of nodes 
i=1 j=I k=l 

used for approximation of each integral. If the limits of integration are not constant 

values (e.g. the triangular finite elements), the used procedure needs to be slightly 

modified. 

Consider that any finite element domain can be approximately meshed into triangles 

or a number of rectangles (boxes, respectively) and a number of triangles (simplexes, 

respectively). If the region has curved boundaries then it cannot be completely filled 

up with boxes and simplexes. 

Consider a two dimensional problem. The double integral of fix. y) over the domain R 

N 

can be approximated by a sum L wJ( Xi' Yi ) where the (Xi. Yi). i= 1 ..... N are the 
i=! 

centres of the rectangles which lie inside Rand Bi is the area of the rectangle 

containing (Xi. y;). One must decide what to do near the boundary. If the mesh is 

relatively small it would be reasonable to include in the sum those rectangles whose 

centres lie inside R and exclude those rectangles whose centres lie outside. 

The alternative method is to write. if possible. a multiple integral as an iterated 

ff rb 1'1'1 x) 
integral that is to write f( x. y)dxdy = [ f( x. y )dy]dx. 

a $( x) 
R 

To approximate the iterated integral on the right side we proceed as follows. We 

select a one-variable formula for the variable x: 

(2.5) 
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Select a second integration formula to approximate each of the following integrals: 

(2.6) 

The above formula will be different for different i but usually one will pick one 

formula and transform it appropriately to each of the intervals [<P( Vi ), 'P( Vi ) J. Finally 

'f'(x) 

<Plxi 

Figure 2.1 
Variable integration limits 

A similar method can be used in three dimensions [33]. 

Here, we construct product formulas for Tn the n-simplex with vertices 

(0,0,0'00.,0,0), (1,0,0'00.,0,0), (0,1,0'00 .,0,0)'00" (0,0,0'00.,0.1). 

T2 is a triangle and T3 is a tetrahedron. The integral of a monomial over Tn is 

Let us transform the integral using the transformation 

19 
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Since the limits of integration for the Xi areO :s; X, :s; 1- XI - ••• - X'_I i = I ..... n. the 

limits for the Yi will be O:S; y, :s; I i = l. ... ,n. 

Since the Jacobean of the transformation is] =(1- YI rl(1- Y2 r 2 ... (l- yn- I ). The 

monomial integral transforms into 

(2.9) 

/31 = a2 + ... + an + n -I 

/3, = a, + ... + an + n - 2 

/3n-1 = an + 1. 

This integral is a product of n single integrals. where the integral with respect to Yk has 

Therefore. if we have n one-variable formulas, each of degree d, of the 

I M 

form fo (1- y, r-k f( Yk )dYk ;: L w,,J( f.1k.,) k = I ..... n, these can be combined to 
i=l 

give a formula of degree d for Tn [33]. For practical reasons, we evaluate the integrals 

of monomials over triangle T2 and tetrahedron T3. For a monomial over T2 we find by 

rl rl - x r( /3 + 2 )r( a + I) 
direct integration I = J, J, XU yfJ dydx = , where the 

o 0 ( /3 + I)r( a + /3 + 3) 
Gamma 

function defined by r( x) = r t,-I e -, dt = ( X -I)r( X -I) is the generalized factorial 

function, that IS, if X IS an integer n=I.2.3..... then we have 

r( n ) = ( n -I )r( n - 1 ) = ( n - 1 )( n - 2 )r( n - 2 ) = ... = ( n -I )( n - 2 ) ... 1 = ( n - I)! . 

Similarly. for a monomial over we have: 

(2.10) 

20 



Chapter 2 

y z 

y==l-x 
z==l-x-y 

x x 

y 
Fig 2.2 

Standard triangular and tetrahedral regions 

Using the Gaussian quadrature formula for numerical approximation of the above-

mentioned integrals (over and respectively) we find 

n m 

1 == L L WijXiG (1- Xi )P+ltj 
i=1 j=1 

and 

n m I 

== LLLWij,XiG(I-xi ya+P+2(l-Sj l+lsjt;, and, m, nand l need not to be selected 
i=1 j::i 1=1 

equal. The nodal points and weights are given by tabulated values. 

1
111

-
X 

As an example the value of I == 0 0 (xy + y2 )dydx is calculated as: 

I == f~f~{xt(l-X)+t2(I-x)2 J(l-x)dtdx 

I = .!. S' S' {( x + I )( I + I X I - X )' + ( I + I )' ( I - X )' jdllix 
4 -I -I 2 2 2 2 2 
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Taking m=n=3 and using table 2-1 we find I =0.121 while I =.!.=0.125 by direct 
8 

integration. 

2.3 Finite Elements, Variational Formulation 

In this section, we briefly describe the construction of finite element method for 

boundary value problems and outline some of their properties. 

The first step in the construction of a finite element method is to convert the problem 

into its weak formulation: 

find U E V such that a( u, v ) = I( v ) liVE V (2.11) 

where V is the solution space (e.g. H ~ (Q) for the homogeneous Dirichlet boundary 

value problem), a(.,.) is a bilinear functional on V x V and 1(.) is a linear functional 

of V. 

The second step in the construction is to replace V in (2.11) by a finite-dimensional 

subspace v h E V which consists of continuous piecewise polynomial functions of a 

fixed degree associated with a subdivision of the computational domain; 

Then consider the following approximation of (2.12): 

find uh E Vh such that a( uh• vh ) = I( vh ) (2.12) 

Suppose, for example, that dimVh = N(h) and Vh = span{9" ... ,9N(h)},where the 

(linearly independent) base functions 9" i = I, ... N( h), have "small" support. 

Expressing the approximate solution uh in terms of the basis functions, 9" we can 

write 
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N(h) 

Uh(X) = LV;(Ii;(x), (2.l3) 
i=i 

where V;, i=l, ... ,N(h), are to be determined. Thus (2.12) can be written as 

follows: 

find VI , ... ,V N(h) E :RN(h) such that 

N( h) 

La( (Ii; ,(lij )U; = l( (lij ), j = 1, ... ,N( h). (2.14) 
;=1 

This is a system of a linear equations for V = (V I , ... , V N(h) f , with the matrix of the 

system A = (a«lij,(Ii)) of size N(h)xN(h). Because the (Ii;'s have small support, 

a«lij,(Ii) = 0 for most pairs of i and j, so the matrix A is sparse (in the sense that 

most of its entries are equal to 0); this property is crucial from the point of efficient 

solution- in particular, fast iterative methods are available for sparse linear systems. 

Once (2.14) has been solved for V = (V" ... ,V N(h»)T, the expansion (2.l3) provides 

the required approximation to U • 

2.4 Finite element formulation of the fluid flow problems 

The finite element method is widely used for the formulation and solution of fluid 

flow problems as well as solids structure problems. A major difference between the 

formulations for the analysis of fluid flows and of solids is the convective terms that 

give rise to the non-symmetry in the finite element coefficient matrix, and when the 

convection is dominant, the system of equations is strongly non-symmetric and then 

an additional numerical difficulty arises [3]. 

Before discussing this difficulty, we note that depending on the flow considered, as 

the convection dominance increases and when a certain range is reached, the flow 
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condition turns from laminar to turbulent. Under such condition, in order to model the 

details of turbulence, extremely fine discretization is required i.e. the resulting finite 

element systems become too large. For this reason, it is reasonable and more 

convenient to solve the governing equations by expressing the turbulence effects by 

means of turbulent viscosity and heat conductivity coefficients, and use wall functions 

(e.g. exponential fits) to describe the near-wall behaviours. 

The modelling of turbulence is a very large and important field and the finite element 

procedures are in many regards directly applicable. In the following, we briefly 

address the difficulty of solving highly convection dominant flows. For this purpose, 

let us consider the simplest possible case that displays the difficulties that we 

encounter in general flow conditions. These difficulties arise from the magnitude of 

the convective terms when compared to the diffusive terms. We consider a model 

problem of one dimensional flow with prescribed velocity v. The temperature is 

prescribed at two points, which we label x = 0 and x = I , and we want to calculate 

the temperature for 0 < x < I . The governing differential equation is: 

du v=kd
2
u 

PCp dx dx' 

With the boundary conditions 

{
u=u, 

U =uR 

at x=O 

at x = I 

(2.15) 

(2.16) 

and the left hand side in (2.15) represents the convective terms and the right hand side 

the diffusive terms. 

The exact solution to the problem in (2.15) is given by: 

P 
exp(-x)-I 

u -u, I --'-- = ---'---
exp(P) -I 

24 
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Where P = vII a is called the Peelet number as a = k / pep . It is well known that the 

numerical solution of (2.15) displays difficulties, as P increases, since the exact 

solution curve shows a strong boundary layer at x = I . 

In order to demonstrate the difficulty in the finite element solution, let us use two 

node elements each of length h corresponding to a linearly varying temperature over 

each element. If we use the standard Galerkin method, for the finite element node i 

we get the governing equation 

P' p' 
( -I--)u. +2u. +(--I)u =0 2 ,-I f 2 1+1 

(2.18) 

where P' = vhl ais the element Peelet number. Therefore, we have: 

I-P'12 I+P'12 
u, = U,+! + U'_I 

2 2 
(2.19) 

This equation shows that for high values of P', unrealistic results are observed. For 

example, if U'_I = 0 andu,+, = 100, we have u, = 50( 1- P' 12), which gives a 

negative value if P' > 2 [3]. 

The analytical solution of (2.15)-(2.16) shows that for a reasonably accurate solution 

P' should be smaller than 2. This means that a very fine mesh is required when P' is 

large. In practice, flows of very high Peel et numbers need to be solved. Therefore, the 

finite element discretization scheme must be amended to be applicable to such 

problems. 

The shortcoming exposed above recognized and overcome by early researchers using 

finite difference method [3]. Considering (2.19), we realize that this equation is also 

obtained when central difference scheme is used to solve (2.15). Hence, the same 

solution inaccuracies are seen when the Euler's central difference method is used. 
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One remedy designed to overcome the above difficulties is to use upwind scheme. In 

the finite difference upwind scheme we use 

du I U,.-U·_1 if 0 ddu I 
-~:::::: I I v> an -~ 
dx h dx 

(2.20) 

In the following discussion, we first assume v > 0 and then we generalize the results 

to consider any value of v. 

If v> 0, the finite difference approximation of (2.15) is 

(-1- P' )uH +(2 + P' )u, -U'+l = 0 (2.21) 

It can be seen that the results obtained with this upwinding is no longer oscillatory. 

This solution improvement is explained by the nature of the (exact) analytical 

solution: if the flow is in the positive x-direction, the values of U are influenced more 

by the upstream value u, than by the downstream value uR • Indeed, when P is large, 

the value of U is close to the upstream value u, over much of the solution domain. 

The same observation holds when the flow is in the negative x-direction, but then uR 

is of course the upstream value. 

The intuitive implication of this observation is that in the finite difference 

discretization of (2.15), it should be appropriate to give more weight to the upstream 

value, and this is in essence accomplished in (2.21). Of course, it is desirable to 

further improve on the solution accuracy, and for the relatively simple (one 

dimensional) equation (2.15), such improvement is obtained using different 

approaches. We briefly present below some of the techniques that are actually closely 

related and result in good accuracy in one dimensional analysis cases. However, the 

generalization of these methods to obtain small solution errors using relatively coarse 

discretizations in general two and three dimensional flow conditions is difficult. 
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The first scheme that we consider is called exponential fitting. The basic idea of the 

exponential scheme is to match the numerical solution to the analytical (exact) 

solution, which is known in the case considered here. 

To introduce the scheme, let us rewrite the (2.15) in the form 

df =0 
dx 

where f is given by the convective minus diffusive parts, 

du 
f=vu-a­

dx 

(2.22) 

(2.23) 

The finite difference approximation of the relation in (2.22) for the i-rh element gives 

(2.24) 

We now use the exact solution in (2.17) to express f'+l/2 and fi-l/2 in terms of the 

temperature values at the nodesi -I,i,i +1. Hence, using (2.17) for the interval i to 

i + I , we obtain 

u· -u. I 

f. - v[u + ' ,. J 
'+112 - 'exp( P' )-1 

(2.25) 

Similarly, we obtain an expression for fi-l/2' and the relation (2.24) gives: 

(-I-c)u'_1 +(2+c)u, -U'+I =0 (2.26) 

where 

c=exp(P'-I) (2.27) 

We notice that for P' = 0 the relation (2.26) reduces to the use of the central 

difference method (and the Galerkin method) corresponding to the diffusive term only 

(because the convective term is zero) and that (2.26) has the form of (2.21) with c 

replacing P'. This scheme, that is based on analytical solution of the problem, gives 

exact solution even when only very few elements are used in the discretization. The 
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scheme also yields very accurate solutions when the velocity v varies along the 

length of the domain and when source terms are included. A computational 

disadvantage is that the exponential functions need to be evaluated while in practice it 

is sufficiently accurate and more effective to use a polynomial approximation instead 

of the exact analytical solution. 

The next scheme to be discussed is the method of Petrov-Galerkin, which is an 

extension of the classical Galerkin method. In the classical Galerkin method, the same 

trial functions are used to express the weighting and the solution. In principle, 

however, different functions may be employed and such an approach can provide 

increased solution accuracy, for certain types of problems. 

In the Petrov-Galerkin method, weighting and trial base functions are selected to be 

different. Consider a finite element discretization of the problem domain and the weak 

formulation of problem within the i-rh element as: 

f
l dh fl dw dh wv-' u.dx+ --' a-' u.dx=O 
-I'dx' -Idx dx' 

j = i -I,i,i + I (2.28) 

where w, denotes the weighting function and the h j are the usual functions of linear 

temperature distributions between nodes i-I, i and i + I . 

The basic idea is now to choose w, such as to obtain optimal accuracy. An efficient 

h dh h dh 
scheme is to use: w, = h + y--' for v > 0 and w,' = h - y--' for v < O. 

, 2dx ' 2dx 

Using this upwinding function in (2.28), we obtain for the case v > 0 

P' P' 
{-1-

2
(y+I)]ui-/ +(2+f'P' )u, +{-2(y-I)-I]u,+1 =0 (2.29) 

We note that fory = 0, the standard Galerkin finite element equation in (2.18) is 

recovered, and when y = I , the upwind finite difference scheme in (2.21) is obtained. 
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The variable y can be evaluated such that nodal exact values are obtained for all 

values of P' as r = coth( ~ _2) [26]. The case v < 0 is solved similarly. 
2 P' 

Another alternative is the Galerkin least squares method where the basic Galerkin 

equation is combined with a least squares expression to obtain good solution accuracy 

[3]. The least squares method applied to the equation (2.15) gives: 

(2.30) 

and 

(2.31) 

where the subscript h denotes the finite element solution corresponding to the mesh 

with elements of size h . 

In the Galerkin least squares method the equation for the nodal variable ui is 

generated by using the classical Galerkin expression and adding a factor 7: times the 

least squares expression. The factor 7: is optimized to obtain good solution accuracy. 

Using for our problem the finite element discretization and evaluating the residual 

element by element (hence, the second derivative terms in (2.30) and (2.31) are zero), 

the i th equation is 

l' dh l' dh dh l' dh dh hiv-' ujdx+ -' a-' ujdx+ (v-' }7:(v-' uj)dx=O, j=i-l,i,i+l 
-I dx -I dx dx -I dx dx 

(2.32) 

where, in the last integral on the left hand side 7: is the unknown parameter. To 

evaluate 7: we can match the relation in (2.32) with the exact analytical solution (as 

we have done for the exponential scheme and the Petrov Galerkin method), and thus 

we obtain: 
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h P' a 
T=-coth---

2v 2 v2 
(2.33) 

It is interesting at this point to compare the exponential method, the Petrov Galerkin 

method and the Galerkin least squares procedures. Such a comparison shows that the 

equations (2.26), (2.29) and (2.32) with the optimal values of c, rand T , respectively, 

are identical within a factor (which has no effect because the right hand side of the 

equations is zero). For this reason, the solutions are identical. However, we should 

note that different solutions from the exponential scheme and the Petrov Galerkin 

method must in general be expected if a general source term is included in (2.15). For 

the linear approximation used here, the Galerkin least squares method gives the same 

solution as the Petrov Galerkin scheme [3]. 

An interesting observation and valuable interpolation is that all these methods are in 

essence equivalent to the Galerkin approximation with an additional diffusion term. If 

we write the Galerkin solution of (2.15) with an additional diffusion term a,B, we 

obtain: 

j=i-l,i,i+1 (2.34) 

The solution of (2.34) is: 

- (1 + q )ui-l + 2u; - (1- q )U;+I = 0 (2.35) 

where 

(2.36) 

The value of ,8 depends on the method which is used. For example, fJ = 0 yields the 

standard Galerkin technique and comparing (2.34) with (2.32), we find for the 

Galerkin least squares method,B = VT P' . 
h 
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It is shown [6] that using the residual free bubble functions is, indeed, equivalent to 

introducing upwinding for convection-dominated problems. These functions couple 

only to the degree of freedom of the specific element considered. The principal idea is 

to compute the solution including the bubble functions and then, ignore the response 

in the bubbles. As an example, in one-dimensional analysis, we may use parabolic 

functions instead of linear elements as the parabolic variation, beyond thc linear 

variation, corresponds to the bubble response [3]. The ideas of the residual free 

bubble functions and variational multi-scale methods are discussed in the following 

sections. 

2.5 Residual free bubble functions 

The development of variational multi-scale methods and the concept of residual free 

bubble functions have enabled researchers to cope with multi-scale problems beyond 

the power of classical finite elements. These techniques are particularly used to solve 

the finite element problems in which the chosen discretization level does not provide 

the stability properties. These methods are generally used in the transport problems 

with multi-scale behaviour in the form of interior and boundary layers such as 

turbulent flow, convection-diffusion equation and flow in porous media [27]. In this 

part, an intuitive description of these methods is presented and its superiorities over 

the classical finite elements are mentioned. The formulation of the scheme is 

presented in the following chapter. 

To start, consider the approximate solution of the following boundary value problem: 

{
LU = j, in Q 

B.C. ondQ 
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as: u '" u + u' . The part u is a piecewise linear and u' is the analytical solution of the 

local residual differential equation: 

{
LU' '" -Lu + f 
u' '" 0 on an, (2.38) 

generated from insertion of u - u into the original equation (2.37), subject to 

homogeneous boundary conditions. The part U IS called the residual free bubble 

function that strongly satisfies the equation (2.38). Now, consider a finite element 

discretization of the problem domain and repeat the above process within each 

element. We are interested to know the properties of the bubble functions and the 

processes involving their derivation. Bubbles are typically, higher order polynomials 

defined on the interior of finite elements that vanish on element boundaries [18]. The 

degrees-of-freedom associated with bubbles are eliminated by the well-known 

technique of static condensation. It is shown [18] that the element Green's function of 

the sub grid problem represents the ultimate residual free bubble. It follows that 

bubbles must somehow represent an approximation to the element Green's function. 

This idea goes back to 1980s where efforts took place to solve the Stokes problem. 

The concept of the bubble element was applied along with the Petrov-Galerkin 

method, which presented numerical schemes incorporating stability and accuracy of a 

higher degree than what was already in use. The variational multi-scale method was 

introduced in [18] and [19], through the procedures of modelling the multi-scale 

phenomena. It is motivated by the simple fact that straightforward application of 

Galerkin's method employing standard bases, such as Fourier series and finite 

elements, is not a robust approach in the presence of multi-scale phenomena. The 

variational multi-scale method seeks to rectify this situation. A simple description of 

the method is: some decomposition of the solution U '" u + u' is sought, where we 
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think of solving for ii numerically, but we attempt to determine u' analytically, 

eliminating it from the problem forii . Indeed, ii and u' may overlap or be disjoint, 

and u' may be globally or locally defined. The effect of u' on the problem for ii will 

always be non-local. The part ii represents coarse scales and the component u' fine 

scales [18]. Basic idea in the bubble function method is to decompose the solution of 

a given boundary value problem into the sum of a coarse scale solution and a fine 

scale one. The classical Galerkin finite element method is used for representation of 

the resolvable coarse scale part of the finite element mesh and bubbles are used for 

the fine scale part of the problem, which cannot be resolved by the crude finite 

element mesh. The idea of the sub-grid scale model is summarized as follows [19]: 

1) u = ii + u' (Overlapping sum decomposition). 

2) u' is determined analytically on each element. 

3) The effect of u' is non-local within each element. 

4) The resulting problem for ii can be solved numerically. 

5) The multi-scale interpretation amounts to assuming that irresolvable fine scale 

behaviour exists within each element, but not on element at boundaries. 

It was first indicated in [4], the importance of bubbles in finite element models in 

terms of enriching the finite element method. In classical linear finite element there 

are two interpolation functions associated to each element, while in the bubble 

enriched method, the approximation is made up of two interpolation functions plus an 

additional component vanishing at element boundaries. This additional component, in 

general, belongs to a functional space, which is orthogonal to the linear space. With 

the approximate form of the solution, the residual equation is solved to yield the 

bubble contribution. 
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2.6 Multi-scale problems- a general description 

Multi-scale phenomena are those in which the field variables show different orders of 

magnitude in the scale of their variations. Fine scale variations usually demonstrate 

their affects during the abrupt changes in the behaviour of field unknowns. Examples 

of such behaviour are presentation of boundary layers in highly porous flows, and 

shocks that present sharp drops and non-smoothness in the variation of the field 

unknown within or around domain boundaries. 

We are interested to study the convection-diffusion problem (2.15) more deeply. The 

problem is already presented in section (2.4) and common approaches for its solution 

are discussed. However, this problem is usually studied in the context of multi-scale 

phenomena and we are interested to consider the difficulties associated with its 

numerical solution using classical methods. To this end, we consider the following 

expression of the boundary value problem: 

d 2u du 
-c-+-=O 

dx 2 dx 
(2.39) 

u(O)=I,u(l)=O, where c is a positive real number. It is convenient to assume 

that c :::; 1. The exact solution is: 

u( x) = I 

x 
exp( - )-1 

c 
1 . 

exp(-)-1 
c 

(2.40) 

It can be seen that when c tends to zero, there is the onset of a boundary layer close 

to x = 1. This is highlighted by the following fact: limlimu( x) oF limlimu( x). 
£-+0 x-+I x-+I £--+0 

%<1 %<1 

Let us proceed with a straightforward discretization of (2.39) using finite element 

method. First rewrite (2.39) in a weak form, assuming that the exact solution 

UE H~(OJ)= (VE H'(O,l): v(O)= l,v( 1)= O} satisfies 
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I
'du dv I'du a(U.V):=E --dx+ -vdx=O 
odxdx odx 

forall VE H~(O.1) (2.41) 

For the domain (0.1). the space H'(O.1) c L2 (0.1) is the set of functions with 

derivatives up to k-th order in L2 (0.1)and H~(O.1)is the space of functions in 

H'(O.1) vanishing at the boundary {0,1}. 

Now consider a discretization of the domain (0, 1) into finite elements by defining the 

nodal points O=xo <x,<",<xN+I=l,wherex j =jl(N+l) and the mesh 

1 
parameter h = --. The approximation space V h C V is defined the space of 

N+l 

piecewise linear functions: 

Vh = {v h E V : vhis linear in (xj>x j +, )for j = 1, .... N + I}. The finite element 

approximation to u is u h E V h such that 

a(uh,v)=O VVEV; (2.42) 

where V; = (vh 
E H~( 0,1): vhis piecewise linear}. Note that u h depends on E , 

although this is not explicitly indicated in the notation. Numerical solution of the 

above problem, is well known to present unrealistic oscillations when E becomes 

very small, unless excessive domain discretization is applied. Looking into the error 

analysis for this problem, gives the idea of where the difficulty arises. The constant 

that appears in our estimates is denoted by C and is independent of the 

parameters E and h . 

First we investigate the continuity of the bilinear form a(.,.). In fact, it follows from its 

definition that 

a( u, v):5; c 11 u IIH'lo.,)1 v IIH'lo.l} for all U,VE H~(O,1) (2.43) 

The problem starts when we try to derive the coercivity estimate: 
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J,
I dv J,I dv J,I dv a(v,v)=e (-/dx+ -vdx=e (-/dx~CellvI12, ,\fvEH~(O,l) (2.44) 
o dx odx 0 dx HIO.I) 

Integration by parts yields: 

J,
I dv 
(-)vdx=Ofor VE H~(O,l). 

odx 

The Poincare's inequality is used at the last step [14]. 

Using (2.43), and then (2.44), we gather: 

Ilu-u h 11', 1)$Ce-la(u-uh,u-uh )=Ce-Ia(u-uhu-vh ) 
H (0. 

$Ce-
I 

Ilu-u h IIH, ol)llu-vh IIH, 01 forallv
h 

E Vh 
I . I . ) 

(2.45) 

Using standard interpolation estimates, we have thatlhu, the interpolator ofu, 

satisfies: 11 u _u
h 

IIH'IO.I)$ h 1 u IH'IO.I)' 

Making vh = I h U in (2.45), we conclude that 

(2.46) 

Let us interpret the error estimate just obtained. First, there is convergence in h. 

Indeed, for a fixed e , the error goes to zero as the mesh size goes to zero. 

The problem is that the convergence in h is not uniform in e. Hence, for small e , 

unless the mesh size is very small, the HI norm error estimate becomes large. The 

estimate is even worse since 1 u IH'lo.l) = O( e-lI2
) which makes (2.46) and the 

traditional Galerkin method almost useless. 

Another way to look at this problem is by first noticing that we would like to have 

limu h = limu = 1. After all, it would be desirable to have a method that converges 
£~o £--+0 

(with e) to the correct solution for a fixed mesh. This is not happening. Indeed, 

looking at the difference problem coming from (2.41), it can be seen that: 

(2.47) 
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where 11 ) = uh
( x j ) . Assume that N is an even number. As E goes to zero, it follows 

thalli , +1 = II j-I' TIns and the boundary conditions originate the oscillatory behaviour 

of the approximate solution (figure 2.3). 

,. ~----~------------------~-----------, u 
12 

1 ............ .. 

01 

00 

o. 

02 

04 0 0 .0 0 02 0 .. 

Fi~urc 2.3 
Unrealistic oscillation In rlnlte element solullon 

of the multi-scale problems 

x' 

Although we used a fmite element scheme to derive (2.47), tIlis scheme is also a fmite 

difference scheme that uses a central difference approximation for the convective 

du Th . fi ' d 'ff .. term-. e more nruve Illite 1 erence approxmllltlOn: 
dx 

(2.48) 

yields a better result. to fact for tIlis scheme u, = U ) - 1' as E goes to zero. 

Since 110 = 1, it holds that u, = I in the E ~ 0 limil: 

limu h
( x, ) = Iimu( x, ) = 1, 

6-+0 1-+0 
for j = 1, .... N. 

The behaviour described above is typical in the PDEs where the onset of boundary 

layers is a conuron pheoomeoon. In SOIre cases, as the small parameter goes to zero, 

and a careless method results in a wrong limit of computed solutioll_ 
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Several numerical methods try to overcome these and other difficulties related to 

asymptotic limits. Looking at these difficulties (and their corresponding solutions) it 

becomes clear that it is important to have a full understanding of the solution's 

behaviour. This is useful not only to help designing new numerical methods, but also 

to analyse and estimate old ones. 

2.7 Finite element approximations for reaction diffusion equation 

In continuation of the above discussions, we consider a similar problem i.e. the so-

called problem of reaction-diffusion and present an introductory discussion on how to 

use finite element techniques to approximate the solution of this problem. Consider 

the following boundary value problem: 

{

LE u := -c:2!'iu + ou = J in Q 

u =0 on aQ 
(2.49) 

where Q is a two-dimensional bounded domain, c: is a positive constant and U IS a 

positive constant. 

In what follows, we consider a partition of Q into quadrilateral elements K . Finally, 

let pl(Q), be the space of continuous functions in Q that are bilinear polynomials 

in each quadrilateral, and define pd (Q) = pi (Q) (l H ~(Q). 

The failure of Classical Galerkin approximation is a well-known fact as c:« 1 . In the 

Galerkin formulation, we seeku' E pd( Q), such that 

a(u',v' )=( J,v' )foraIlv' E POI(Q). (2.50) 

We are interested in finding a finite element discretization for (2.49) that is stable and 

coarse mesh accurate for all c:. We use the approach of enriching the finite element 

space. The idea is to add special functions to the usual polynomial spaces to stabilize 
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and improve accuracy of the Galerkin method. This goes along with the philosophy of 

residual free bubble functions [4),[5),[6). We use a Petrov-Galerkin fonnulation (i.e., 

the space of test functions differs from the trial space) and choose the space of test 

functions as polynomial plus bubbles, but with a different trial space. Consider: 

uh = Po
1(Q)Id1E'(Q). as the trial space, where E'(Q) is yet to be defined. As the 

test space, we set Po' ( Q ) Id1 H ~ ( K ). K ET. 

In this Petrov-Galerkin formulation:u h =u 1 +u' E U h
, where u1 E pd(Q) and 

u' E E'(Q), and: 

a( uh 
• vh 

) = ( f. v' ) for all vh 
E pd ( Q ). 

a( uh
• v) = ( f. v ) for all vE H~( K) and all K ET 

From (2.52), we conclude that, for every K, 

Lu' =f-Lu 1 in K. 

(2.51 ) 

(2.52) 

(2.53) 

The usual residual free bubble formulation subjects u' to a homogeneous element 

boundary condition, i.e., u' = 0 on dK, for all elements K. Herein, we replace this 

condition by a more sophisticated choice [14). 

To determine u' uniquely, we impose the boundary conditions: 

u' = 0 on dK if dK E dQ ,LaKU' = R( f - Lu1) on dK if dK e dQ. 

u' = 0 on all vertices of K 

where R is the trace operator, and we choose 

LaKV = _£2d "v +dv 

(2.54) 

(2.55) 

(2.56) 

where s denotes a variable that runs along dK . Note that the restriction off to K 

must be regular enough so that its trace on dK makes sense. Henceforth, we assume 

thatfE p1(Q). 
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The choice of (2.56) is ad hoc, and by no means unique. However, it can be justified 

under the light of asymptotic analysis [14]. In some sense, the polynomial part of the 

approximation (u l in our case) captures the smooth behaviour of the exact solution. 

The local multi-scale behaviour is seen by the enrichment functions (u' in our case), 

that adds its contribution to the final formulation, without making the method 

expensive. In other words, it is possible to describe the multi-scale characteristics of a 

solution for a singular perturbed PDE, without having to resolve with a refined mesh. 

We can formally write the solution of (2.53)-(2.56) as 

U'=e/(f-L,.u l )EL2 (Q),where L,.=LXK L (2.57) 
KeT 

and X K is the characteristic function of K. We finally set E' (Q) = L:I pi (Q) . 

Substituting (2.57) in (2.51), we gather that 

(2.58) 

Finally: uh = ( I - elL,. )u l + Cl f . Note nevertheless that, because of (2.55), uh = u l 

at the nodal points, as in the usual polynomial Galerkin formulation. 

Note that our particular choice of test space allowed the static condensation 

procedure, i.e., we were able to write u' with respect to u l and f as in (2.57). 

The matrix formulation can be obtained as follows. Under the assumption: 

fE pl(Q), we write 

where I and 10 are the set of indexes of total and interior nodal points,{ If/ j J jeJ 

form a basis of pl(Q), and (If/jJjeJ• form a basis of POI(Q). Substituting in (2.57), 

(2.59) 
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where we used that 

(2.60) 

To write the variational formulation in an explicit form, it is convenient to define: 

Hence, (2.58) reads as 

L a( A j ,If/ j ,U; = L [( If/ j ,If/, ) - a( Z;;11f/ j ,If/, ) J f j for all i E J 0 (2.61) 
jeJo jeJ 

Using the definition of the bilinear form a(.,.) , and (2.60), yields 

(2.62) 

Concrete computations of the matrix formulation follows. A core and troublesome 

issue in the present method is solving the local problems. From its definition, Aj 

solves: 

:> {1 on the jth vertice of T 
LaKA =OonuK, A = 

} } 0 on the other vertices of T 

(2.63) 

bilinear over a rectangular mesh, we have that If/ j is still linear over dK. Hence, 

LaKIf/ j = a If/ j' If we take a particular node I E J 0' and look at all elements connected 

to this node, then the equation (2.53) can be used to illustrate the nodal shape 

functions AI . 

Consider now a rectangular straight mesh. Our goal is to find Aj • Without loss of 

generality, consider a rectangle K with vertices 1,00.,4 at (0,0), (h"O), (h,.hy ) and 

(0, hy ) where h, .hy are the grid lengths in x and y directions. We have: 
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- 6" ~A, + l7A, = 0 in K 

On the side y = 0 , we have that 

for XE (0,1) 

A,( hx,O)=O 

Hence, A, (X,O) = Jlx (x,) := 
sinh(6'-' ,Ja(x- h » 

I x , similarly we find that: 
sinh(6'-' "l7hx ) 

A,(O,y) = Jl/Y):= 

Charter 2 

(2.64) 

We propose two simple closed form for A" none of which satisfy (2.54)-(2.56) 

exactly. If we set A,( X,Y ) = Jlxf x )Jly( Y ), then (2.55)-(2.56) holds, but 

- 6" ~A, + 2l7A, = 0 in K thus, (2.54) is not satisfied. If we let 

A,(x,y) 

Then (2.54) holds, but the boundary conditions at x = 0 and Y = 0 do not hold in this 

case [14]. 

2.8 Limitations of residual free bubble functions 

In the final part of the previous section, the behaviour of the bubble functions which 

did not satisfy the original differential equation, is described. This reflects the 

difficulties associated with the derivation of bubble functions for multi-dimensional 

problems. In this section, we present an example to prove that such scheme may result 

in losing all advantages of using bubble enriched finite elements. 

Consider the following boundary value problem: 
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{
- u· = f on (0,1) 

u(O) = u(l) = 0 

The weak fonnulation for the equation (2.65) seeks u E H ~ (n) such that 

(u', v') = (f, v), 'Itv E H ~ (n) 

Chapter 2 

(2.65) 

(2.66) 

where (.,.) denotes the integral on (0,1), and H ~ (n) is the space of functions 

satisfying (2.65) with square integrable value and derivative on the unit interval. 

The standard Galerkin finite element method is obtained by computing with the weak 

fonnulation (2.66) on a subspace of H ~ (n) consisting of continuous functions that 

are piecewise polynomials on a partition of the unit interval. We define elemental 

basis functions using fixed reference coordinate q on (-1,1). For piecewise linear 

approximation, the two basis functions on each element are: 

(2.67) 

For a quadratic approximation, the basis functions are: 

(2.68) 

Note that lp2 is zero on the element boundaries, and is referred to as a bubble 

function. We can write 

(2.69) 

The global stiffness matrix of the problem can be obtained from perfonning the 

assembly process. For the linear approximation, the elemental stiffness matrix is 

given by: 

(2.70) 
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where the subscript K on the bilinear fonn (.,.) denotes the range of the integral of 

(.,.) is on the subinterval K instead of (0,1) . The element load vector is: 

(2.71) 

with the same convention on subscript K. For the quadratic approximation, we have: 

and 

( rpl,rp2 )K 

(rp2,rp2 )K 

(rp2 ,rp3 )K 

(2.72) 

(2.73) 

Using static condensation, the unknown value corresponding to the bubble function 

rp2 can be eliminated at the element level. More precisely, we can take v = rp2 on K 

and zero elsewhere to write: 

(2.74) 

for each element K, where uh is the solution of the Galerkin method that can be 

written on an element K as 

3 

Uh IK= LrpnUn (2.75) 
a=l 

with Un' a = 1,2,3 denoting the unknown values at the nodes corresponding to each 

shape function defined on element K [12]. 

Substituting (2.75) into (2.74) yields: 

3 

L( rpn ,rp2 )KUn = ( f ,rp2 )K (2.76) 
(/=1 

or solving for u 2 
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(2.77) 

Equation (2.77) gIves an explicit fonnula for computing the unknown value 

associated with the mid-side node, and it clearly holds for any element K in our 

partition [12]. Simplifying (2.77) using (2.69) gives: 

(2.78) 

and the integration by parts results in: 

(2.79) 

Similarly: 

(2.80) 

Therefore: 

(2.81 ) 

Equation (2.81) shows that if( j,({J')K = 0, then the bubble unknown coefficient U2 is 

the average of the vertex nodes. This occurs when there are point loads applied to 

vertex nodes, and in this particular circumstances, there is no advantage in using 

quadratic approximation. 

However, even when( j,({J2)K ;cO, the vertex unknowns are the same as we had 

computed with linears. Let us show this by further examining the element stiffness 

matrix and the element load vector. Using (2.69), matrices (2.72)-(2.73) reduce to: 

I 
( 1fI, .IfI, )K + 4"( lP, • ({J2 )K 

I -"2( ({J, .({J, )K 
1 

(1fI,.IfI, )K + / ({J, .({J, )K 

Aq 
-

I 
( ({J, .({J, )K 

I 
(2.82) K- -"2( ({J, • ({J, )K -"2( ({J, • ({J, )K 

I 
(1fI,.IfI,)K +4"( ({J,,({J2)K 

I -"2( ({J, • ({J, )K 
1 

(1fI2.1f12 )K +4"( ({J,.({J2)K 
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1 
( I,/{f, )K - z( I,rp, )K 

(f ,rp2 )K (2.83) 

1 
( 1,/{f2)K -z( l,rpZ)K 

If we now take A;u, where u = {u, U z U 3 }T , then the second component is just the 

left-hand-side of (2.76), which we know by (2.76) equals the second component of 

Fi . The first component of A;u is given by: 

(2.84) 

which using (2.81) reduces to: 

(2.85) 

Similarly, 

(2.86) 

Therefore, neglecting the second row of A1, which has been used to obtain (2.85), 

(2.86), we can write: 

(2.87) 

which is equal to the linear element matrix, equation (2.70), times the vertex unknown 

minus the contribution to the right-hand-side that is also in (2.83). 

Finally, assembling (2.87) and (2.83) to obtain the global equations, results in the 

same matrix and right-hand-side vector as if we had employed linear functions from 
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the beginning. Therefore, the vertex unknown on each element u, and u3 will have 

the same value as if we had used linears, for any function f(x) . 

An explanation of why there is no advantage in using higher order interpolation for 

this particular model equation is the well-known super-convergence result that the 

finite element approximation, interpolates the exact solution at the nodes. We 

observed that static condensation of the interior node of the quadratic polynomial 

yields the same matrix problem as the linear approximation. Therefore, the vertex 

node unknowns of the quadratic approximation give identical values as the node 

unknowns of the linear approximation, for any source function f(x) [12]. 

2.9 Application of residual free bubble functions to solid deformation 

problems 

So far, we have observed several applications of the residual free bubble functions in 

the analysis of the fluid flow problems and considered their advantages, limitations 

and extent of practicalities. However, it is proved that the method of residual free 

bubble functions improves the procedure and the degree of accuracy of the solution 

when applied to solid problems. Here, we give an example of such a problem that is 

sol ved using the residual free bubbles and present the method's capabilities in 

facilitating the solution procedure. 

The Timoshenko model describes the deflection of a beam taking into account 

bending and shear deformations [12]. Standard Galerkin finite element method using 

equal-order piecewise linear approximations for the unknown dependent variables 

rotation 8 and displacement w yields spurious oscillations. 

However, the standard piecewise linears, enriched with residual-free bubbles show 

that the Galerkin method, without using the tricks of using full integration, produces 
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reduced integration with a coefficient for the shear. The load term gets some 

correction as well and the final formulation is nodally exact. 

The governing equations of this model are: 

l
-B# -~(w' -B )=0 

£ . r. In,. 
1 # , 

--(w -B )=f 
£2 

(2.89) 

where Q = (0,1), Band w are the rotation and displacement variables, f is the load 

and E is a non-dimensional parameter proportional to the beam thickness. 

To (2.89) we append the following boundary conditions, without loss of generality: 

{
w(0) = w(l)= 0 

B(O)=B(I)=O 
(2.90) 

The variational formulation, corresponding to the above equation and its boundary 

condition is to: Find {B, W}E H ~ (Q) 2 such that 

(2.91) 

where H ~ (Q) is the space of functions with square-integrable value and derivative in 

Q satisfying (2.90) and we use the notation (f, g) = J fgdQ . 
Q 

Consider a partition of Q into non-overlapping elements In the usual way. Also 

assume that the exact solution of our problem can be decomposed into 

{
B=B, +Bb 

w=w, +Wb 
(2.92) 

where B, and w, are spanned by the standard continuous piecewise linears of finite 

element method, and Bb and Wb are assumed to satisfy the following differential 

equations in each element K: 
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, 1 'B B' 1 'B) -B --(w - )=-(- --(w - ) b 2b b 1211 
C C 

1 K B') 1 ( 'B' ) --,(wb - b =-(--2 W,- ,)-/ 
c c 

(2.93) 

subject to the boundary conditions: 

(2.94) 

Note thatB,-= w~ = 0 in K, therefore equations (2.94) can be written as 

{
-c2B; +Bb -w~ =w; -B,. 

B' K B' 2/ b -Wb = - ,+c 
(2.95) 

From (2.94) we get Bb - W~ = W; - B, + c2B; and combining with (2.95) yields: 

B;=/ inK (2.96) 

If we integrate three times with respect to the local variable in the element (i.e . 

.; E [0, h k ], hk = Xi+! - Xi' .; = X - Xi) and assume piecewise constant load / , and for 

notation's sake drop the subscripts of hand / (nowhere we need to assume that hk 

is constant in what follows) we obtain 

(2.97) 

Applying the boundary conditions B.(O) = Bb(h) = 0 above gives: 

l= .; l=' 2 .; l= Bb (;,)=- /(;, - -h )+c,-(;, -h) 
6 2 

(2.98) 

Using this expression into the first equation of (2.95) after one integration, we get 

Wb (.;) = f.< B, (t)dt - w, (.;) - c2 [L(3';2 - h 2
) + 2(2'; - h)] 

o 6 2 

+ / [.L-f.h21-.5.';2(3h - 2';) + c 
6 4 2 12 4 

(2.99) 
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Applying the boundary conditions Wb (0) = Wb (h) = 0 in (2.99), we get expressions for 

the remaining constants Cl and C 4' The expressions for the residual-free bubble 

functions are given by: 

f!:2 2 c2 h' 
+-[-c +---J 

2 12 6 

WJ h)-wJO) } 

h 

(2.100) 

(2.101) 

If we take the test functions If = Ifl and v = VI' where Ifl and VI are spanned by 

continuous piecewise linears, then using decomposition (2.92) the variational 

formulation (2.91) can be rewritten as 

(2.102) 

where, by integration by parts, we used that: 

(8; ,If;) = L(8;,If;)K = L[(8b ,If;)aK -(8b ,If;JKl=0 
K K 

Note that (2.102) consists of the Galerkin method for equal-order piecewise linear 

approximation for 8 and w (without tricks, using full integration) plus a 

'perturbation term' that we need to compute based on the bubble functions given by 

(2.100) and (2.101). First, by (2.100) and (2.101) we compute: 
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(2.103) 

Note also that 

(2.104) 

Thus, assuming (2.103) to (2.104) 

, , 2 h 1= [;2 h 
W -8 +w -8 =[; f(--.,)- [8(-) 

I I b b 2 h2 I 2 
[;2 + (_) 

12 

(2.105) 

Therefore, using (2.105), the variational formulation given by (2.102) reduces to 

(2.106) 

where we reintroduced the subscripts for h and the piece wise constant load f. This 

can also be rewritten as 

(2.107) 

where R stands for a reduced integration operator. Formulation (2.107) was derived 

using full integration throughout and by construction, its solution is nodally exact. 

The final form is identical to application of the following ideas to the standard 

variational formulation: to use one-point reduced integration on the shear term, to 

replace its coefficient ~ by 
[; 

1 2 in each element and to correct the right-hand 
h 

([;2 +_') 
12 

side as in equation (2.107) for piecewise-constant loads. 
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To emerge with these collections of ideas requires ingenuity and for the first two 

ideas, some authors have given different arguments [12]. We wish to point out that the 

residual-free bubble provides us with a systematic approach to construct discretization 

procedures that may possibly improve the existing schemes. 

From what presented in this chapter, we can see that the multi -scale variational 

approach presents a reliable substance for the study of multi-scale problems. As far as 

the manual solution of ordinary or partial differential equations is concerned, these 

techniques are stable and sufficiently accurate. However, the practical implementation 

of these methods is not a trivial matter. Derivation of the residual free bubble 

functions may result in the analytical solution of a differential equation, which 

becomes a cumbersome procedure in multi-dimensional problems. Solution of the 

analogous ordinary problem is not always extendable to higher dimensions. As a 

result, it remains an important issue to implement the idea of the bubble function 

within a practical scheme in order to automate the method and make it case­

independent to some extent. We will pursue this ambition in the following Chapters. 
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A novel method for the derivation of bubble functions for the finite 

element solution of two-point boundary value problems 

. In this chapter, first the classical Galerkin approximation and the residual free bubble 

methods are introduced within the context of variational formulation of differential 

equations. The general second"order boundary value problem with scalar coefficients 

is considered and its associated practical bubbles are derived using the method of least 

squares minimization. This method is regarded to be an alternative to the previously 

available techniques. The advantages of this technique over the existing procedures 

are discussed. Benchmark problems are solved using the quadratic polynomial bubble 

enriched finite elements and the results are tested against standard finite element and 

exact solutions. 

3.1 Classical Galerkin approximation and residual free bubbles 

Consider the following boundary value problem: 

{
LU = /, in Q 

B.e. ondQ 
(3.1) 

where Q is a domain in Rn (initially assumed to be an interval in R) with a boundary 

ofdQ, L is a linear differential operator, U is an unknown scalar or vector valued 

function and/is a given source function. We assume that L is such that the problem is 

well posed (i.e. it has a unique solution and that continuously depends on the initial 

values). 
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The weak formulation of system (3.1) requires the solution to satisfy the variational 

formulation of the above equation. This involves the multiplying of the residual by a 

set of test functions and integration of the resulting functions by parts (Green's 

integral theorem). To develop a classical Galerkin finite element scheme for equation 

(3.1) we assume a partition of Q into elementsn,such that neither overlapping of 

elements nor gaps between them occurs. The approximation space Vh is chosen from a 

finite dimensional space related to the partition that satisfies Vh cV, where Vii is the 

space of functions in which we seek a solution to the continuous variational problem. 

We set h=max {diam (n,)} as the partition diameter. 

The Galerkin method states that: Find U E Vh such that 

(Lu, v) = <t, v) VvE Vh (3.2) 

where (.,.) is a bilinear form of the variational problem (3.1). To enrich the standard 

Galerkin scheme by the use of bubble functions each u E Vh is taken as the sum of 

standard piecewise linear parts and bubble functions. To specify this we 

writeu = u, + ub Vu E Vh , where u, and ub are the linear and the bubble components, 

respectively. We require the bubble function to vanish on the element boundaries, a 

well-established method towards the validity of the incorporation of a bubble function 

in finite element scheme. For the residual free bubble, we seek the bubble component 

to strongly satisfy the residual equation within each element, i.e.: 

{

LUb = -Lu, + f in n, 
ub = 0 onan, 

(3.3) 

The vanishing of bubbles on each element boundary allows the use of static 

condensation [27] that makes possible the following selection of 
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{

Vb on Q, 
V = in (3.2). 

o else 

Therefore, after solving equation (3.3) exactly or approximately we have: 

(3.4) 

Therefore, it is sufficient to find u=u1 +ub such that: 

(3.5) 

The approximate solution of problem (3.1) can be written as: 

n 

U=U1 +ub = ~),(~ + I/I-,} + tP/ (3.6) 
;=1 

where tP and Ij/ are bubble and linear shape functions, respectively and n is the 

number of nodes per element. At this point, application of the finite element 

procedure to obtain the unknown nodal values u, will result in the solution of the 

problem. 

3.2 Polynomial bubble functions 

The residual free bubble method, mentioned in previous section, offers a practical 

approach towards the solution of multi-scale problems in which both fine and coarse 

scale variations need to be taken into account. In order for the numerical methods to 

capture fine scale variation of a multi-scale problem, one requires to excessively 

refine the discretization of the problem domain. This generally requires the size of 

elements that are smaller than the thickness of boundary layers and results in a huge 

number of equations to be solved. The main idea behind the described residual free 

method is to solve the residual equation (3.3) subject to homogeneous boundary 

conditions. This, however, can be as difficult as solving the original differential 

equation especially in two and three-dimensional problems. Another difficulty is that 
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the typical complex form of residual free bubbles cannot be directly used in the 

evaluation of elemental integrals in finite element procedures. Therefore, in order to 

offset this loss of flexibility, it is desirable to convert them into simpler approximate 

forms to make it possible to use quadrature methods in a finite element program. In 

[27] and [28] the polynomial approximation of bubble functions is introduced and 

satisfactorily accurate and stable results are obtained for a multi-scale convection-

diffusion problem. In this scheme Taylor series approximation of bubble functions 

within each element is carried out and the higher dimensional generalization is 

derived based on the analytical solution of analogous ODE, Taylor series 

approximation of the residual free bubble and tensor product of one-dimensional 

bubble functions. In what follows, alternative approaches to the residual free method 

are discussed and a novel least squares based method for the generation of bubbles is 

presented. It is worth however, before proceeding any further, to compare the least 

squares fit with series approximation of a given function. Application of the method 

of power series is justified, while the solution of differential equation is assumed 

sufficiently smooth over the element domain. This, however, cannot be known a 

priory, in many problems. It is preferred sometimes to work with a practical simple 

approximation of the solution rather than working with complicated solutions 

expressed in terms of special or sophisticated functions. Polynomials are among the 

best options to be used as bubble functions under such conditions. They can be easily 

integrated or differentiated and can be expressed as orthogonal families with respect 

to suitable norms and weighting functions. Every continuous function, over a closed 

interval can be expressed in terms of polynomials, which is a significant property in 

the development of approximate finite element schemes for differential equations. 

Power senes expansion of a function y(x) = :t y" (O)x" when truncated to 
n=O n! 
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( ) _~yn(O)xn YN X - L., 
n=O n! 

always gives a good approximation near x= 0, but as x 

increases (or decreases), the approximation tends to get worse. This is also the case in 

general point-wise approximations. The least squares fit, on the other hand, results in 

an almost uniform approximation for an interval, depending only on the weight 

function w(x). Another fundamental issue is that power series fit at a point whereas 

the least squares method generates fits over an interval. Thus, the least square method 

provides the weighted average of the unknowns within the range of any scattered 

sample of data. In numerical computations, it is not generally possible to accurately 

estimate the derivatives at a point from the samples scattered in an interval. Therefore, 

exact matching interpolating polynomials or least squares polynomials are frequently 

used instead of truncated power series. However, one drawback of the least squares 

fitting is that the initial values of data points outside of a range could deviate the 

model from correct predictions. This problem should be relaxed by methods such that 

the experimental data used for generating the points are accurate. In practical 

modelling, those models that rely on lower number of parameters are more desired 

and the model calibrations are more straightforward. In such situations, the method of 

least squares has mainly the potential for dealing with either continuous variables or 

large samples of discrete variables. 

3.3 Derivation of residual free bubble: A convection diffusion 

problem 

In this section, a scalar convection diffusion ODE is studied and the corresponding 

residual free bubble is derived. The convection diffusion model in one dimension is 

formulated by the following differential equation: 
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d 2u du 
--k(x)- = f(x) in Q 
dx 2 dx 

(3.7) 

subject to essential boundary conditions, wherexE Q and Q is the open interval (0, 

1). Assume k a constant, the corresponding equation is: 

(3.8) 

Consider a discretization of Q into finite elements and let the domain and boundary 

of element be Q, ,dQ, respectively. Corresponding to the case f = 0, the suggested 

solution of the problem is written as: 

(3.9) 

where u, is the standard continuous piecewise linear finite element approximation 

ofu, and ub is the bubble part, satisfying strongly the elemental residual differential 

equation (note that d2~, = ° in Q,): 
dx 

!
d2Ub _kdu. =k du , 
dx 2 dx dx 

ub =OondQ, 

in Q, 
(3.10) 

Consider a formal power series representation of the trial solution of equation (3.10): 

(3.11) 

with respect to the local element variable: 17E [0,1,], I, = X i+' - Xi' 17 = x - xi' 

(denoting du, 
d17 

and: 

A., in Q,). We find: 

- -
Ln( n -1 )an17 n

-
2 

- Lknan17n
-' ;; ki!, (3.12) 

n=2 
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n=O 

with the boundary condition, ub(O )=0 we obtain the recursive formula: 

using lA (l, ) = 0 we get 

Therefore: 

kn(a l +A,) 

(n + I)! 

Chapter 3 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The uniform convergence of the series is guaranteed everywhere in Q, thanks to the 

nature of the problem and the ratio test applied to (3.14). Truncation of the formal 

power series in (3.16) provides an approximate solution of (3.8): 

(3.17) 

By direct solution of (3.10), the following closed form expression for the residual free 

bubble function is derived: 

_ A.,l, (1 "~I) , ub(1])- kI -e -"',1]. 
I-e ' 

(3.17) 

This, in fact, is equivalent to the power series (3.16). 
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3.4 Least squares approximation used to generate residual free 

bubble functions 

In this section, a novel finite element method for the solution of previously described 

boundary value problems is presented by the use of polynomial approximation of 

bubble functions obtained from the method of least squares minimization. Here, the 

method is introduced and comprehensively described within the content of an 

example and the general cases are investigated in later sections of the thesis. 

Consider the following two-point boundary value problem: 

{
u*+u=o, onQ=[0,2} 

u( ° ) = 0, u( 2 ) = 1. 

The exact solution of the above problem is 

(3.18) 

( ) sine x) C 'd' . I u x = . ons! enng a numenca 
sine 2) 

solution of equation (3.18), we study a discretization of the interval [0,2] into N sub-

domains each of the lengthl j =xj+l-xj,where O=xo <XI <",<XN =1,j=I, ... ,N. 

Let us assume that the local approximation of u in the j-th subinterval Ij = [Xj, xj+Il is 

of the closed form: 

(3.19) 

in which 8 2) x) = C jX( I j - x) is the quadratic polynomial bubble of the element Ij 

added to the classical Lagrange element. We agree to extend 8 2.j to zero outside the 

element Ij . The bubble coefficient Cj shall be determined in a way to reduce the 

approximation error without the need to incur mesh refinements. The following 

polynomial approximation can be readily applied to the polynomial bubbles of as 

higher order as desired, with the assumption that the bubble part vanishes at element 

boundaries. 
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To start, substitute the approximate fonn (3.19) into the equation (3.18) in the local 

interval Ij to get the residual R. For the sake of simplicity, adopt the standard interval 

[0, If and the associated shape functions. Hence (3.l9) is written as: 

- I-x x 
uj{ x)= --u(O )+-u( I )+cjx( I-x) 

I I 

Setting Uo = u l 0 ),u, = u II ) and replacing (3.20) into equation (3.18) one has: 

In order to find the optimal value of Cj, we introduce the functional: 

Minimizing iB with respect to Cj using the least square technique yields: 

H . 5 ( 12 -12)( ) h . I·· avmg c . = -- 2 2 Uo + u, ,t e approxImate so utlOn IS: 
} 2 20+(1 -10) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

- I-x x 5 12-12 
Uj(x)=--uo+-U,--( 2 2)(uo+u,)(x(l-x)) (3.24) 

I I 2 20+(1 -10) 

S · 5 ( 12 -12 ) ·d ettmg a = -- 2 2 proVI es: 
2 20+(1 -10) 

- I-x x 
uj{ x)= {--+ax( I-x )}uo +{ -+ax(i-x )Ju, 

I I 
(3.25) 

The above derivation is valid as it results in a unique minimum value due to the 

differentiability, non-negativity and the parabolic structure of the functional i. In 

general, where there are more than only one bubble coefficient to be detennined, 
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equation (3.23) will result in a system of equations and solving the system will 

provide the bubble coefficients. This case will be discussed in following sections. 

Approximation (3.25) is a quadratic approximation, whereas using the static 

condensation we only need to determine the nodal values of Uo = u( 0 ),u/ = u( I ) in the 

finite element scheme. Another significant advantage of the least squares derivation of 

approximate bubble function is that the analytical solution of residual equation (3.3) is 

avoided which is crucial in the automation of the approximation process by a 

computer code. 

In order to determine the nodal values Uo ,u/ the weighted residual procedure will be 

applied to approximation (3.25). 

Rewriting (3.25), in terms of shape functions, within the space of finite element 

- I-x x 
gives: Uj( x)= Nouo + Ntu/ whereNo( x) = --+ax( I-x ),Nt( x) =-+ax( I-x). 

I I 

The weighted residual statement (weak formulation) with respect to weight function 

w( x) is: 

Similar to the standard Galerkin method we make the following selection of weight 

I-x x 
functions woe x) = N o( x)= --+ax( l-x),wJ x)= N t( x) = -+ax( 1- x). 

I I 

Therefore, corresponding weighted residual statements are: 

/ -f (NI (N IU I + Niiu 11) - N; (N;u I + N;lu 11) = -{N I u:(x) 1I~ 
o 
/ -f (Nil (Nlu l + Niiu lI ) - N;I (N;u l + N;IUII) = -{Nil u; (x) }I~· 

(3.26) 

o 

The matrix representation of the above system of equation is: 
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I I -NJ~~ 
- f(N;N; -NJNJ) - f (N;J N ; - NJJNJ) 

uJ 

0 0 = I J 
- f (N;J N ; -NI/NJ) - f (N;JN;J - NJJN JJ ) 

u JJ - NJJ~I~ 0 0 

(3.27) 

where ~ is the boundary line term. Substitution of shape functions into the above 

matrix system and evaluation of integrals and boundary line terms give: 

I 1 a a2 
3 a2 

5 I 1 a a2 
3 a' 5 

UJ qJ 
(---)+(---)1 +-1 (-+- )+( ---)1 +-1 

3 I 6 3 30 6 I 6 3 30 (3.28) = 
I 1 a a2 

3 a2 
5 " 2 I 1 a a" 3 a 5 

(-+- )+( ---)1 +-1 (---)+(---)1 +-1 
6 I 6 3 30 3 I 6 3 30 uJJ -qJJ 

equi valent to the decomposed matrix form: 

[" "l 
UJ 1 1 u J qJ 

(---) (-+-) 2 2 
3 I 6 I a a 3 a 5 

(3.29) +{(---)l +-1 ) = 
1 1 I 1 6 3 30 

(-+-) (---) 
6 I 3 I ul/ 1 1 u JJ - qJJ 

where a = -~( 12 ~ 12 2)' This illustrates the fact that the bubble part belongs 
2 20+( 1 -10) 

to the quadratic space. orthogonal to the space of standard linear elements. 

Returning to equation (3.18) and setting the refinement of [0,2J into divisions with 

2 , 
. a a 3 a 5 

equal sIze of 1 =0.2, one gets a = 0.25083 and (---)1 +-1 = 0.0001673 and the 
6 3 30 

general local stiffness matrix (3.28) is evaluated as: 

[
-4.93316 5.03350] 

5.03350 -4.93316 
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Therefore, the global stiffness matrix obtained from assembling local matrices is 

-4.9331 5.0335 0 0 0 0 0 0 0 0 0 

5.0335 -9.8663 5.0335 0 0 0 0 0 0 0 0 

0 5.0335 -9.8663 5.0335 0 0 0 0 0 0 0 

0 0 5.0335 -9.8663 5.0335 0 0 0 0 0 0 

0 0 0 5.0335 -9.8663 5.0335 0 0 0 0 0 

0 0 0 0 5.0335 -9.8663 5.0335 0 0 0 0 

0 0 0 0 0 5.0335 -9.8663 5.0335 0 0 0 

0 0 0 0 0 0 5.0335 -9.8663 5.0335 0 0 

0 0 0 0 0 0 0 5.0335 -9.8663 5.0335 0 

0 0 0 0 0 0 0 0 5.0335 -9.8663 5.0335 

0 0 0 0 0 0 0 0 0 5.0335 -4.933 

At this point, imposition of boundary conditions I.e. u( 0 ) = 0, u( 2) = 1 and 

elimination of redundant equations corresponding to the boundary values will result 

into solution of system and the nodal values. Nodal values of the quadratic bubble 

enriched method, the analytical solution and the lO-point linear finite element results 

are listed in the following table for comparison: 

x lO"Point fill Bubble Enriched 
.. 

Exact 

l: 
0 0 0 0 

0.2 0.2178 0.218491 0.218487 

0.4 0.4269 0.428263 0.428263 

0.6 0.6191 0.620948 0.620966 

0.8 0.7867 0.788866 0.788912 

1 0.9230 0.925326 0.925408 

1.2 l.0227 l.0249 l.02501 

l.4 l.0817 l.083629 l.083749 

l.6 l.0977 l.099178 l.099281 

l.8 l.0709 l.0709291 l.070989 

2 1 1 1 

Table 3.1 
Comparison of standard, bubble enriched and exact solutions 
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The quadratic bubble enriched finite element method provides relatively better results 

as compared to the lO-point standard Lagrange elements. The approximation is more 

accurate not only within the elements, but also at nodal points. As SOOl1 as the nodal 

values are fouuc!, the approximation (3.25) can be used to detennine the intermediate 

elemental values: 

-
Lt j ( x)= {1-5x+0.25083x(0.2 - x)}uo +{5x+0.25083x(0.2 - x )}It/ (3.30) 

= {l-4.94983x-0.25083x2 }uo + {5.05016x-0.25083x2 }u, 

The following diagr8l11s show the performance of the linear finite element and the 

quadratic practical bubble solution of the above problem against the exact solution. 

12 ~ __________________________________________ ~ 

It 

0.9 

0 .6 

0 .3 

x 
O A----r--~----r_--T_--,----r--~----r---,_--~ 

o 0.2 0 .4 0 .6 0 .8 1.2 14 1.6 1.8 

I __ Exact 10-point F.E. -.- 10-point F.E. quadratic bubble I 

ngure 3.1 
IQ-point FE, IQ-point bubble enriched FE, Exact solution 

Equi-dislant nodes 
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0.9 

0 .6 

u 

I- Exact 4-point F.E. - 4-point quadratic bubble I 
.'i~lIrc 3.2 

4-poiOl FE. 4-point bubble enriched FE. Exact solutioo 
Uneven mesh with node at x=O. I. 1.25. 1.75.2 
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3.5 The use of the least squares method to develop a practical scheme 

for bubble function generation: general case 

We are now in a position to extend our method to lllOre general case of two-point-

scalar boundary value problems. represented by ODEs of second order. The following 

results are also applicable to the weakly nonlinear case and some types of nonlinear 

problems. However, due to the existence of nonlinearities, such cases require 

individual treatment of each problem, which is beyond the scope of the present thesis. 

Therefore, the following discussion only considers a scalar two-point boundary value 

problem gi ven as: 

{

EU* + KU' + All = t, 
uCa) = a, u(b) = /3. 

011 Q = [a ,bj 
(3.31) 

66 



Chapter 3 

Assume, for the sake of simplicity, that /=0. Once again, the problem domain is 

discretized into N sub-intervals a = Xo < Xl < ... < xN = b, j = 1, ... ,N and the elemental 

quadratic approximation of the solution of (3.31) is taken to be 

x-xl' x
J
+! -x 

u(x)= uj +l + uj+c/x-xj)(xj+l-x) over the j-th sub-interval. 
xj +! - xl' xJ+1 - Xl 

Transforming the approximation to the standard interval [0 IJ provides the more 

convenient form of: ~ j( x) = 1- X u( 0 )+ X u(l ) + C jX( 1- x). The residual, generated 
1 1 

from the insertion of this form into equation (3.31), is written as: 

(3.32) 

In a fashion quite similar to what discussed in previous section, the following 

functional is considered: 

(3.33) 

minimization of the residual functional with respect to Cj usmg the least square 

technique yields: 

(3.34) 

Note that the previous example was a special case of current discussion, 

corresponding to the selection of E = I, K = O,A = I. 

The approximation to the solution of(3.3\) is written as: 
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- I-x x 
Uj(x) = {-+ (a -b)x(l- x) ju(O) + {- + (a +b)x(l- x) ju(l) 

I I 

5 (-A.>e + l2EAI) 
a= 0.35) 

2 A21' - 20Aa l + iOK21] + l20lE 2 

b= 5 24EK 
2 A21' - 20Aa l + iOK21l + l20lE2 

The general weighted residual statement corresponding to the weight function w( x )is 

written as: 

f _ _ _ 

0= f W(X)(EU~(X)+KU~(X)+AUj(x))dx~ 
o 

I _ I _ I _ _ 

E f - w'(x)u' j (x)dx + Kf w(x)u~ (x)dx + A f w(x)u j (x)dx = -{cw(x)u; (x) jl~· 
(3.36) 

o 0 0 

Making selection of the Galerkin weight functions equal to the approximation shape 

functions: 

I-x x 
Wo (x) = N{ (x) = --+ (a -b)x(l-x) and w1 (x) = N{{ (x) = -+ (a +b)x(l- x), the 

I I 

weighted residual statements are written as: 

{ { 

-Ef N;(N;u{ + N;{u{{)dx+Kf N{(N;u{ +N;{u{{)dx 
o 0 

{ 

+ A f N{ (N{u{ + N{{u{{)dx = - {EN{9J1~ 
o 

{ { 

-Ef N;{(N;u{ + N;{u{{)dx+Kf N{{(N;u{ +N;{u{{)dx 
o 0 

{ 

+ A f N{{ (N{u{ + N{{u{{)dx = - {EN{{9J1~ 
o 

(3.37) 

where, 9 is the boundary line term. The matrix representation of the above system is: 

{ { I 

-eJ N;N; +KJ N{N; +AJ N{N{ 
000 
I { I 

-eJ N;{N; +KJ N{{N;+AJ N{{N{ 
o 0 0 

(3.38) 
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Substitution of shape functions into the above matrix system and evaluation of 

integrals and boundary line terms give the following general elemental stiffness 

matrix: 

[
A BIU,] [q,] 
C D ulI = -qll 

- 30e+ lOAl2 -ISId + Al'(a _b)2 +SAl'(a -b) -108'(a _b)2 
A 

3Q1 

60e+ l0Al2 + 301d + UJ'(a2 _b2) + 1OAl4a + 20ld'a - 2084 (a2 _b2) 
B 

6Q1 

60e+ 1OAl2 -301d + UJ'(a 2 _b2)+ 1OAl'a - 20ld'a - 2084 (a2 _b2) 
C 

6Q1 

- 30e+ lOAl2 + ISId + Al'(a+b)2 + SAl '{a +b) -108'(a +b)2 
D 

3Q1 

(3.39) 

The selection of parameters c,K,A.,lin model (3.3\), provides the numerical values 

for the local stiffness matrices and the finite element method can be applied 

accordingly. 

3.6 Higher order practical bubble functions and the approximation 

error 

Questions that arise naturally in the context of polynomial approximation are on the 

possibility of employing higher order approximations and sufficiency of a selected 

approximation. Answering these questions enables us to become closer to the actual 

optimum of least computational cost while achieving higher accuracy. In this section, 

we address these issues briefly. First, we introduce higher order bubble functions 

derived using the method of least squares. We will then consider a general error 

analysis of the least squares approximation using a family of orthogonal functions 

over the element domain. 

The following consideration, deals with the possibilities of increasing the order of 

polynomial bubbles. Remembering the equation (3.3\), let: 
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- I-x x , 
uj{ x )=--u(O )+-u( I )+cjx( I-x)+ fjx (I-x) 

I I 
(3.47) 

be the cubic approximation of u within the j-th element. Note that the above fonnal 

representation of the approximate solution is valid if the unknown function u is 

assumed sufficiently smooth. We insert the approximation (3.47) into the equation 

(3.31) and introduce the residual functional in a quite similar fashion as what we did 

in (3.33). Minimization of the residual functional with respect to the unknown 

parameters C j and f j yields a linear system of two equations and two unknowns that 

its solution provides US with the values of C j and f j expressed in tenns 

of u(O) and u(l) : 

(l8,{4 + 52[6,{' (1(" - 2,{c) + [4 (4320'{' c' -1680,{K' c +420K4) + [' c 2 (5040K2 -60480,{c) + 302400c 4) 

and 

_ 2.{ [6,.14 (u(O) - u(l)) _80[4,.1' £(u(O) -11(1)) + 10[4,.1' K' (11(0) -11(1)) + 300[',.1' K£(u(l) + 11(0» 

f j 
- [ (18,.14 + 521 6,.1' (K2 _ 2,.1£) + [4 (4320,.1' £' -1680AK2 £ + 420K') + [2 £' (5040K' - 60480AE) + 302400£4) 

+-;13~2~0~['~A7'£~'~(u~(0~)_-~u(~[)~)-_6~0~0~['~AE=K~'~(U~(0~)_-~u~(I~»~-~36=0~ill~£7'cl~(II~(0~)~+~II~(I~))~+~25~2~ill~'~~~£~(u~(~[)_-~U(~O~))~ 
(18,.14 + 52[6,.1' (K2 - H£) + [4 (4320,.1' £' -1680AK' £ + 420K') + [2£' (5040K' - 60480,.1£) + 302400£4) 

- nooA£' (u(O) -11(1)) + nOOK' £'(11(0) -11(1)) 
+ } 

(I' A' + 52[6,.1' (K2 - 2,.1£) + [' (4320,.1' £' -1680AK' £ + 420K') + [' £'(5040K' - 60480,.1£) + 302400£') 

corresponding to the cubic bubble function. 

Numerical values of the bubble function coefficients can be detennined given that the 

parameters e, K,A,I are known in the model equation. As it can be seen from the 

above discussion, there is no major difficulty associated with the derivation of higher 

order polynomial bubble functions using least squares fit. However, we consider that 

the general bubble coefficients are complicated and that the parameters e, K, A, I are 

model dependent. Therefore, we would rather prefer to derive the high order bubble 
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polynomials while solving actual equations in which the model parameters are given 

in advance. 

We are now in a position to discuss the second issue associated with the least squares 

polynomial approximation of bubble functions that is what degree polynomial to use. 

To this end, first consider the notion of orthogonality of an independent set of 

functions If; 1:'::1 with respect to the weight function w(x) over the interval [a b]: 

f.b w(t)!. (t)/
j 
(t)dt = {o 

n A. > 0 , 

i # j 

1= J 
(3.40) 

If s: w( t )1/( t )dt = 1 then the system is said to be orthonormal. A well-known 

example, is the orthogonal set of Legendre polynomials { p, }~I with respect to w(x)=l 

over the standard interval [-1 +1} where: 

fl {O 
_/m( x)Pn( x)dx = 21(2n+l) 

m#n 
(3.41 ) 

m=n 

that is defined by (n + 1)P, n+li x) - (2n + I )xPn ( x) + nPn_1 ( x) = O. 

Now, suppose that { t. }i~1 is a set of orthonormal polynomials over the interval [0 I}, 

with respect to weight function w(x). The least squares approximation of the function 

u on [0 I} in terms of the base functions is: 

N 

u( x)= Le.!,! x). (3.42) 
i=l 

According to the Bessel's theorem [17], the following equality holds: 

(3.43) 

where 
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N 

E( X)=U( X)- L,CJ,( x) 
;=1 

(3.44) 
I 

C j = f w( x)u( x)f/ x)dx. 
o 

The coefficients C j in (3.42) are called Fourier coefficients. Employing the notation of 

Ilull~, = f~ w( X )u 2
( x )dxfor the functional space norm of u, it can be seen that: 

(3.45) 

In order for the square of the approximation error to be less than a prescribed value <5 , 

it is sufficient that N is found so that: 

N 

Ilull~, :s; <5 + L,cJ (3.46) 
j=l 

On the other hand, ifllull- = sup{ lu( x A;O:S; x:S; 1 }, a sufficient condition to satisfy 

(3.46) is to choose N large enough for: 

1 N 

Ilull~ :s; -( <5 + L,cJ ). 
1 j=l 

(3.47) 

Error bound (3.47) shows that smaller element size I, the lower degree polynomial is 

required. Although, the inequality (3.46) is sharper than (3.47), they are useful when 

one is provided with the upper and lower bounds of the unknown function. 

Plotting this quantity (figure 3.3) as a function of the degree N of the polynomial 

being used gives a clue[17J: 
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Figure 3.3 
Representation of error as a flIDction of degree of polynomial 

A remarkable property of least squares fit with orthogonal functions is that each 

coefficient C j is detennined independently of all the others. Therefore, the use of 

higher order polynomials is facilitated, as no re-detennination of the Fourier 

coefficients is required. 

3.7 Numerical solution of a reaction-diffusion problem using least 

squares bubble functions: a worked example 

From what we discussed in the previous sections, it can be concluded that the least 

squares bubble enrichment of the finite elements is a potential technique, in which we 

are able to use crude meshes while improving the element -level accuracy, without 

assuming any additional elemental midpoints. This technique, in a sense, is similar to 

the selection of hierarchical fmite elements to contribute to the approximation. 

However, the difference is that, in our approach prior to the implementation of the 

finite element scheme to evaluate the nodal values, the enriched shape functions are 

worked out initially in an independent process and in such a way that the optimal 

bubble coefficients are derived. 
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In order to observe the effects of the bubble enrichment of the finite elements in 

improving the approximation with the use of a crude mesh, we consider the so-called 

diffusion-reaction problem that is used to model several phenomena such as the study 

of chemical processes or concentration of the pollutants. Consider the following scalar 

boundary value problem: 

-u'+u=O, onQ=[O,lOj 
lOO I
-I 

3 du 
u(O)=Z' dx(x=lO)=O 

having the exact solution: 

u(x) =l{ exp(loo)exp(-lOx) + exp(-loo)exp(lOx) } 
2 exp( -lOO) + exp(loo) exp( -lOO) + exp(loo) 

(3.48) 

(3.49) 

As discussed earlier in section (2.7), due to the smallness of the diffusion coefficient 

0.01, compared to the reaction coefficient I) this problem presents a sharp drop (steep 

gradient in the solution) near the boundary wall (figure 3.4) that is called a boundary 

layer. This creates error in approximation by the use of linears only and hence the 

failure of the classical Galerkin finite element follows. The problem worsens when 

the ratio becomes even smaller. 

1.5 

1.25 

1.0 
U 

0.75 

0.5 

0.25 

0.0 
0.0 2.5 5.0 7.5 10.0 

x 

Figure 3.4 
The exact solution of equation (3.48) 
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Now consider the finite element discretization of the problem domain and the 

enriched quadratic approximation: ~j( x)= 1- x u(O)+ x u( 1 )+cjx( I-x)within the 
1 1 

j -thelement. From the discussion in section 3.5 and using the equation (3.34), we 

get the bubble coefficient: 

c = - 25( 251
2 

+ 3) (u( 0 ) + u( 1 )) 
} 2501 4 +501 2 +3 

and the elemental stiffness matrix becomes: 

0.3+101' +l'a' +51'a +0. ll'a' 

301 

-0.6+ 101' + 21'a' + 100'a +0.2I'a' 

601 

-0.6+IOI'+21'a'+IOI'a+0.2I'a' ["l] [ql 1 
0.3+101' +1'a::5I'a+0.ll'a' = _ 

Un qu 
301 

(3.50) 

(3.51) 

The remaining step in the finite element solution of this equation is to perform the 

assembly process in order to obtain the global system of equations. Solution of this 

system yields the numerical values for the selected nodes. In our example, we have 

used different meshes of 30 and 50 equal size elements, respectively, and obtained the 

numerical solutions corresponding to the use of the linear finite elements and 

quadratic bubble-enriched finite elements. The comparison of the results from the 

standard linear and the bubble-enriched finite elements against one another and 

against the exact solution shows that the approximation difficulty is overcome by the 

use of quadratic bubble functions, whereas a coarser mesh is used (figure 3.5). 
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Figure 3.5 
Linear, bubble enriched and exact analytical solUlions 

We have seen in this chapter how higher order element shape functions could be 

generated in a straightforward way. These higher order bubble functions are in 

particular important due to the reasons: they possess the merit of simplicity and 

computational ease due to having polynomial fonns. With the least squares bubble 

functions, the finite element approximation is improved using a p-convergence rather 

than an h-convergence. We assumed unknown parameters in our definition of the 

bubble functions, however, the straightforward evaluation of these parameters 

allowed us to improve the approximation without introducing any additional nodes. 

Finally, compared to the method of residual free bubble functions, we avoided solving 

directly the residual differential equation, which increases the practicality of the 

presented technique. Since the derivation and implementation of the residual free 
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bubble functions is not a trivial matter in many problems, in practice it becomes 

inevitable to introduce small elements and use the quadratic or cubic least squares 

bubble functions to approximate the ideal residual free bubble functions. 
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Derivation of Bubble functions for unsteady problems, and extension of 

the method to multi-dimensional case 

In this Chapter, the extension of the main concepts of the least squares bubble 

functions to transient boundary value problems (i.e. initial value problems) and multi­

dimensional cases are described. Here, we introduce a partial discretization method 

used for the solution of one-dimensional time-dependent problems. We present the 

quadratic least squares fit for the bubble-enriched finite element solution of a time­

dependent initial-boundary problem of the diffusion-reaction type and compare the 

obtained results with the results generated using linear finite elements and also the 

exact analytical solutions. Later in this Chapter, higher order least squares bubble 

functions for unsteady one-dimensional problems are investigated and some basic 

methods for the derivation of the multi-dimensional bubble functions defined over 

rectangular and triangular elements are presented. 

4.1 Least squares bubble functions for transient problems; partial 

discretization method 

In the Previous Chapters, we studied the steady-state two-point boundary value 

problems and derived the elemental bubble functions for their solutions based on the 

method of least squares. However, in a great number of practical problems the 

conditions of the unknown functions change with time. Therefore, for such problems, 

dependency on the time has to be taken into account. In such problems, we are 
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provided with the state of the model at an initial time t=O as well as certain conditions 

along the exterior boundaries, and in general, the determination of the state of the 

unknowns at subsequent times is required. 

Although a combined discretization of both temporal and spatial derivatives is, in 

general, possible, however, this approach is complex and shall not be used. We will 

use the Kantorovich method for partial discretization. Therefore, in the development 

of the technique for the solution of the initial boundary value problems, the initial and 

boundary conditions have no effects towards derivation of the bubble functions, as for 

the case of one-dimensional problems. A justification of this approach can be given as 

follows: in the partial discretization method, only spatial discretization is carried out 

which makes the problem, equivalent to a steady state case. This is fulfilled by the 

procedure that temporal variations in multi-scale problems are captured by the 

solution of a system of ordinary differential equations with given initial conditions. In 

these problems, the spatial variables, however, undergo abrupt changes which makes 

it inevitable for higher resolution to be taken into account in space directions. In other 

words, in multi-dimensional multi-scale problems higher resolution is required at any 

directions in space, while in one-dimensional transient cases, increasing the degree of 

resolution is important in spatial discretization only. 

The main interest is to investigate the effects of the bubble enrichment of the finite 

elements on both local and global stiffness matrices. Therefore, it will be more 

illustrative to first describe the application of the partial discretization method to 

transient boundary value problems and then use the least squares bubble functions to 

enrich the finite element scheme. 

Let us, consider the following time-dependent initial-boundary value problem: 
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dU d2u 
/3-+C-2 +AU=g( x) 

dt dX 
U(X,t)=/(X) t=O 

U( x,t )=0 

U( X,t )=0 

x = a,t <': 0 

x=b,t<,:O 

ChaDler4 

(4.1) 

where /3,c,A are constants and we take g = 0 for the sake of simplicity. We proceed 

with the finite element discretization of the domain in x -direction and set: 

a = Xo < XI < ... < xn = b . 

Consider the trial function approximation: 

X I-x 
il . (x,t) = a

l 
(t)- + a2 (t)_l_-

1 j I. ) I 
1 1 

(4.2) 

defined within the i-th element of domain discretization and zero elsewhere (we shall 

drop the subscript i). 

The weighted residual statement reqUIres the residual generated from replacing 

identity (4.2) into equation (4.1) to be zero on average i.e.: 

r' dil d 2U 
0= J, w(/3-+c-+Au)dx 

o dt dX 
(4.3) 

Use of the Green's integral theorem (integration by part) results in the weak form: 

l' dil l' dW dU l' dU , 0= {Jw(x)-dx- c--dx+ Aw(x).udx=-cw(x)-Io 
o dt 0 dX dX 0 dX 

(4.4) 

We make a selection of the Galerkin's method and set the weight functions: 

X I-x 
w,( X )=- and WII( x) = --, respectively. 

I I 

We drop the index i from the element length I, making the assumption of elements 

with equal size. Inserting the approximation (4.2) into formulation (4.4) gives the 

following elemental system of equations: 
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where ifJ1,ifJU are the boundary integral terms. 

Equation set (4.5) is written in the form: 

-da - -jJC-+Ka=j 
dt 

with the elemental matrices: 

a=[alj],C=[~ 
az · I J _ 

6 

1.-1 [AI -~ 6 K= 3 I 
I' Al [; 
- -+-
3 6 I 

Chapter 4 

(4.5) 

(4.6) 

(4.7) 

Performing the assembly process and applying essential boundary conditions to the 

obtained global system of equations, along with removal of the equations 

corresponding to the first and the last time-dependent functions, results in a set of first 

order ordinary differential equations analogous to (4.6) for each a j i.e. we get: 

da 
c. __ J +ka. =0 

J dt J J 
(4.8) 

~~I 
With the solution a j{ t) = Aje '1 and the values Aj are found according to the local 

boundary conditions. Finally, the approximation to the solution of (4.1) is written: 

(4.9) 

With the short description given above, we are ready to employ our technique of the 

least squares bubble functions to enrich the finite elements for the transient problems. 
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Now consider the following equation: 

()u ()'u 
-+&-+u=O 
()t ()x' 
u( x,t)= f( x) 

u( X,I) = 0 

u( x,t) = 0 

t=O 

x = a,t;:: 0 

x=b,t;::O 

Chapter 4 

(4.10) 

and for the finite element discretization of the domain In x -direction set: 

a = xo < x, < ... < xn = b . Consider the trial function approximation: 

x [-x 
uj(x,t)=a, (t){-+ex(l-x)}+a, (t){--+ex([-x)) , [ -, [ (4.11) 

defined within the j-th element of domain discretization and zero elsewhere. Note that 

we have made the selection of quadratic least squares bubble function as developed in 

(3.31)-(3.35) of previous Chapter to deal with the ordinary differential equation 

& d'~ + u = O. In this case, the unknown bubble coefficient is found: 
dx 

e= 
-5 (1'-12&) 

2 [4 -20El' +120&' 
(4.12) 

The Galerkin's weighted residual statements corresponding to the weight functions 

woe x)= [-x +ex( [-x ) and wd x)= x +ex( [- x) give rise to the following system 
[ [ 

of equations: 

e 2
[" +5cl 4 +10[' 

30[ 

e 2
[" + 5cl 4 + 51 2 

301 

e 2
[" + 5cl 4 + 5[' 

30[ 

e 21" + 5cl 4 + 1012 

301 

- &(1Oe 2
[4 + 30) 

30[ 

_&(1Oe 2[4 -30) 

30[ 

_&(lOe 2
[4 -30) 

301 [a,j (t) ] 
+ 

_&(10e 2[4 +30) a 2j (t) -

30[ 

For the sake of notation simplicity, we set: 
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E
-- C2[6 +5cl 4 +10[2 C2[6 +5cl 4 +5[2 
------ F =------

30[ , 30[ 

(4.14) 

[~ 
Performing the assembly process results in the global matrix system: 

elimination of redundant equations corresponding to the boundary values will result 

into solution of system and evaluation of the nodal values. 

4.2 Application of the method to a transient problem 

In order to illustrate what described in section (4.1), we shall consider the following 

initial boundary value problem: 

ilu _ il
2
u =0 

ilt ilX2 
u( x,t)= X( I-x) 

u( x,t)= 0 

u( x,t)= 0 
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To start, consider first the linear approximation ii} (x,t) = a, (t) x +a2 (t) /- x , 
, / ' / 

within the j-th element. The weighted residual statement is: 

':\2 - ':\-

11 a U aU . 
Wj (-2 --)dx=O, J =1,2, ... ,M +1 

o dx dt 
(4.17) 

and using the integration by parts gives the weak form: 

rl dii dW j dii diil
l

. J, (--+-w)dx-wj- =0, J =1,2, ... ,M +1. 
o dx dx dt dX 0 

(4.18) 

The Galerkin weighted residual statement corresponding to the selection of weight 

functions equal to the shape functions wI ( x) = x and w
ll 

( x) = / - x and setting M=2, 
/ / 

/=0.5 gives rise to the following assembled system of global equations: 

1 1 
0 a;(t) 1 -1 0 al(t) I/JI 

3 6 
1 1 2 1 

a;(t) +2 -1 2 -1 a 2 (t) 0 (4.19) - - - = 
2 6 3 6 

0 
1 1 
- - a;(t) 0 -1 1 a 3(t) -I/JIIl 6 3 

The imposition of essential boundary conditions at x = O,x = 1 yields: 

1 1 
0 0 1 -1 0 0 I/JI - -

3 6 
1 1 2 1 

a;(t) +2 -1 2 -1 a 2(t) 0 (4.20) - - - = 
2 6 3 6 

0 
1 1 - 0 0 -1 1 0 -I/JIIl 6 3 

and the only equation to be solved is the ordinary differential equation: 

1 , 
(4.21) -a, (t) + 4a2 (t) = 0 

3 

h' h . I' . () 1 -/2, . d' h -(1 0) 1 w IC Its so utton IS a, t =-e ,conSI enng t at U -, =-. 
424 
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x I-x 
Now, let u;.(x,t)=a, (t){-+cx(l-x)}+a, (t){--+cx(l-x)} be the trial 

j I I I 

h 
-5 (I' +12) 

approximation of the solution of (4.16) were c = In a quite 
2 [4 +20[' +120 

similar fashion to what described in (4.17)-(4.19) we obtain: 

[
0.1616 

0.0782 
0.0782][a: (t J] [2.002 
0.1616 a;(t) + -1.9975 

-1.9975][a,/ t J] [!PI ] 
2.002 a,/ t) - -!Pu 

and the global stiffness matrix is: 

[

0.1616 

0.0782 

o 

0.0782 

0.3232 

0.0782 

[ 

2.002 

+ -1.9~75 

o ][a;( t)] 
0.0782 a;( t J 

0.1616 a;( t) 
-1.9975 0 ][a,(tJ] [!PI ] 
4.004 -1.9975 a,( t J = 0 

-1.9975 2.002 ai t J -!Pili 

and the imposition of the boundary conditions results: 

[01616 
0.0782 

~0782 I ~("j 0.0782 0.3232 

0 0.0782 0.1616 0 

[ 2.002 -1.9975 

_,°"75 I ~," H ~' 1 + -1.9~75 4.004 

-1.9975 2.002 0 -!Pili 

which provides the equation: 

0.3232a; (t) + 4.004a, (t) = 0 

and we obtain a,! t J = .!.el -
12

.
38

)1 • 

4 

4.3 The least squares bubble function: A worked example 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

Consider the problem of one-dimensional unsteady heat conduction with the reaction 

term in the region 0:5 x:5 n is governed by the following initial-boundary equation: 
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Clu Cl 2u 
---+u=O 
Clt Clx' 
u( x,t)= sine x) 

u( x,t)=O 

u( x,t)= 0 

t=O 

x=O,t ;:::0 

x = l[,t;::: 0 

with the exact solution given as: u( x,t ) = sine x )e-2
' ,XE [O,l[ J and t;::: O. 

Chapter 4 

(4.26) 

We solve this equation, using the partial discretization method and with the use of 

standard linear and bubble enriched finite elements, respectively, and compare our 

results against the exact values. 

Consider the finite element discretization of the equation domain in the x direction as 

0= Xo < x, < ... < x, = l[ and let the trial approximation within the j-th element be 

written as: u
J 
(x,t) = a, (t)~ + a 2 (t) 1- x . 

, I ' I 

The weighted residual statement corresponding to the weight function 

Cl 2A CIA 
W is: f' W (u -~ + ~)dx = 0, j = 1,2, ... , M + I and using integration by parts 

J Jo J Clx· Clt 

requires the weighted average to be zero i.e.: 

f' A Clu Clw j Clu Clul" J, (UWj +---+-wj)dx-wj - = 0, ] = !,2, ... ,M +1. 
o Clx Clx Clt Clx 0 

(4.27) 

With the selection of the weight functions equal to the linear shape functions as in 

previous examples i.e. w/ x) = x and wll ( x) = I - x , we obtain: 
I I 

f.' (~u+! Clu +~ Clu)dx= X Clul' 
o I I Clx I Clt I Clx 0 

l' I - X A ! Clu I - x Clu I - x Clu I' (--u---+--)dx=-
01 IClx I Clt I Clx o 

which results in the following local system of equations: 
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(4.29) 

If we restrict the consideration to two linear elements of equal lengths, that IS, 

M = 2, 1= 1l , then (4.29) can be re-written as: 
2 

and the assembled system of equations is: 

1l 1l 
0 

1l 2 1l 2 
0 -+- ---

6 12 

[a,(" 1 6 1l 12 1l 
1l 1l 1l 

a;(t) + 
1l 2 1l 4 1l 2 --- -+- ---

12 3 12 
a;(t) 

12 1l 3 1l 12 1l 

0 
1l 1l 

0 
1l 2 1l 2 --- -+-

12 6 12 1l 6 1l 

~~IX:I 

_ ~~lx:1 

[a,(<) 1 
a,(t) = 

a 3 (I) 

(4.30) 

~~lx:1 

0 (4.31) 

_ ~~lx:1 
However, the imposition of the boundary conditions from (4.26) requires the values of 

a, and a3 to be zero that gives rise to the following ordinary differential equation: 

1l, 1l 4 
-a,(t) + (- +-)a, (t) = 0 
3 3 1l 

(4.32) 

Since u( 1l ,0) = 1 = sine 1l ) we find a, (t) = exp( -t _ 12:) = exp(-2.216t) . 
2 2 1l 

Moreover, the piecewise global approximation is found to be: 

j
2X exp(-2.216t) if XE [0, 1l] 
1l 2 

u(X,/) = 
2(1l-x) exp(-2.216t) if XE [1l ,1l] 

1l 2 

(4.33) 

Now, in order to examine the performance of our second approach (i.e. the least 

squares bubble function enrichment of finite elements) we remember the discussion 
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leading to the selection of the quadratic shape functions (4.11) and the bubble 

coefficient (4.12). For this purpose, let us assume the approximate solution of 

equation (4.26) be: 

x I-x 
U(x,t)=al (t){-+Cx(l-x)}+ao (t){-+cx(l-X)) 

J j / -, / 
(4.34) 

within the i-th element and zero elsewhere. With the quadratic polynomial bubble 

coefficient introduced in (4.12) and corresponding to c: = -1 we find that: 

-S (/2+12) 
c= 

2 /4 +20/ 2 +120 
(4.3S) 

The Galerkin's weighted residual statements corresponding to the weight functions 

I-x x wo( x)=--+cx(/-x)and wd x)=-+cx(/-x) result: 
/ / 

C
2

/
6 + Scl

4 + 10/ 2 

30/ 

C
2

/
6 + Scl 4 + S/2 

30/ 

C
2

/
6 +Scl 4 +S/2 

30/ 

C
2

/
6 +Scl 4 +10/ 2 

30/ 

- c:(lOc 2/ 4 + 30) - c:(lOC 2
/

4 -30) 

+ 
30/ 30/ 

_c:(lOc 2
/

4 -30) - c:(lOc 2
/

4 + 30) 

30/ 30/ 

[al/t)] = 
a 2j (t) 

_ c: oul' 
(4.36) 

ox 0 

oul' c:-
ox 0 

Similarly, if we select M = 2, / = J( then c = 0.2061 and the system (4.36) becomes: 
2 

[
0.67027 0.40848][a;J(t)] [1.36174 -0. 17432][alj (t)] 
0.40848 0.67027 a;/t) + -0.17432 1.36174 a2j (t) = 

. (4.37) 

The assembled system of equations is: 
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[

0.67027 

0.40848 

o 

0.40848 0 ][a; (t)] 
1.34054 0.40848 a; (t) 
0.40848 0.67027 a; (t) 

[ 

1.36174 -0.l7432 

+ -0.17432 2.72348 

o -0.l7432 

Chapter 4 

o ][a, (t)] 
-0.l7432 az(t) = 
1.36l74 a, (t) 

~~r=l 
o 

_ ~~IX=1 

(4.38) 

The imposition of boundary conditions implies that a, = a J = O. After the elimination 

of the redundant equations from system (4.38), we find az satisfying the ordinary 

differential equation: 

1.34054 a; (t) + 2.72348az (t) = 0 (4.39) 

which its solution is a z( t) = exp( -2.0316t ). 

The piecewise global approximation is found as: 

j
{2X +0.2061xc" -x)}exp(-2.0316t) if XE [0, 7Z') 

7Z' 2 2 
u(x,t) = 

2(7Z'-x) 7Z' 7Z' 
{ +0.2061(7Z'-x)(x--)}exp(-2.0316t) if XE [-,7Z') 

7Z' 2 2 

(4.40) 

corresponding to the selection of two elements of equal length given above. 

Feasibility of the generalization of the least squares bubble functions to the solution of 

time dependent equations, and its similarity to the one dimensional case, is illustrated 

in the above development. Furthermore, a comparison between the exact solution of 

the initial-boundary equation (4.26) and the approximations that we have just 

constructed, demonstrates the efficiency of the approximation by least squares bubble 

functions and its superiority over the linear finite elements in the solution of the 

unsteady partial differential equation. It can be observed that the quadratic bubble-

enriched finite elements, provide closer estimation of the behaviour of the exact 

analytical solution, even though a crude mesh is adopted to test the technique. The 
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following tables and figures presented at different cross sections of the solution, 

provide an intuitive proof of this statement. These results are selected from the 

solution profiles at different time steps and space level for t = 0, t = 0.9 and x = 771 , 
8 

respectively. 
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EXact Solution of A'obtem (4,26) 

!I(X. t) 

l' igure 4.1(0) 
Exact solution of problem (4.26) 

Bubble fnrched Solution of A'oblem (4.26) 

Figure 4.1(b) 
Bubble enriched solution of problem (4.26) 

Lilaar F.E &;ulion cl Rcbfem (4.26) 

u(X. t) 

x 

Figure 4.1(c) 
Linear F.E. solution of problem (4.26) 
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Solution Profile at t,,() 
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0.6 

0.4 

0.2 
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Figure 4.2 

Solution profile at f = O. 0 S; X S; n 

Solution profile at t=O.9 

0.18 

0.16 u(x ,I) 

0.14 

0.12 

0.1 

0.08 

0.06 // 0.04 

0.02 

0 
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Figure 4.3 
Solution profile at t = 0.9, 0 S; X S; n 
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U(X, t) U(X, t) 
Exact Bubble 

0 0 

0.195090322 0.180620618 

0.382683432 0.345349631 

0.555570233 0.494187039 

0.707106781 0.627132842 

0.831469612 0.744187039 

0.923879533 0.845349631 

0.98078528 0.930620618 

1 1 

0.98078528 0.930620618 

0.923879533 0.845349631 

0.831469612 0.744187039 

0.707106781 0.627132842 

0.555570233 0.494187039 

0.382683432 0.345349631 

0.195090322 0.180620618 

0 0 

Table 4.1 
Companson of the results 3tl=0 
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U(x, t) 
Linear 

0 

0.125 

0.25 

0.375 

0.5 

0.625 

0.75 

0.875 

1 

0.875 

0.75 

0.625 

0.5 

0.375 

0.25 

0.125 

0 
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ft 
-
16 
ft -
8 
3ft -
16 
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-
4 
5ft -
16 
3ft -
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7ft -
16 
ft -
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9ft -
16 
ft -
8 
11ft 
-
16 

3ft -
4 

13ft --
16 

7ft 
-

8 
15ft --
16 

ft 

t=0.9 
x 

u(x, t) u(x, t) 
Exact linear 

0 0 

0.032248213 0.017027228 

0.063257146 0.034054457 

0.091835142 0.051081685 

0.116883965 0.068108914 

0.137441003 0.085136142 

0.15271626 0.102163371 

0.162122716 0.119190599 

0.165298888 0.136217828 

0.162122716 0.119190599 

0.15271626 0.102163371 

0.137441003 0.085136142 

0.116883965 0.068108914 

0.091835142 0.051081685 

0.063257146 0.034054457 

0.032248213 0.017027228 

0 0 

Table 4.2 
Comparison of the results at 1=0.9 
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Chapler4 

u(x, t) 
Bubble 

0 

0.029019232 . 

0.055485256 

0.079398071 

0.100757676 

0.119564073 

0.13581726 

0.149517239 

0.160664008 

0.149517239 

0.13581726 

0.119564073 

0.100757676 

0.079398071 

0.055485256 

0.029019232 
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8 
t 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.45 
U(X, t) 

0.4 

0.35 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

0 ~ o· 

u(x, t) u(x, t) 

Exact Linear 

0.382683432 0.25 

0.313314695 0.200328981 

0.256520376 0.160526802 

0.210021121 0.128632682 

0.17195075 0.103075416 

0.140781367 0.082595972 

0.115262035 0.066185468 

0.094368573 0.053035469 

0.077262452 0.042498166 

0.063257146 0.034054457 

0.051790571 0.027288379 
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u(x, t) 

Bubble 

0.345349631 

0.281856289 

0.230036347 

0.187743624 

0.153226517 

0.125055461 

0.10206372 

0.083299065 

0.067984336 

0.055485256 

0.045284161 
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4.4 Multi-dimensional problems and bubble functions: general ideas 

of the extension 

One important advantage of the method of finite elements is the ability to solve partial 

differential equations defined on geometrically complex domains in two or three 

dimensions. In two-dimensional analysis, triangles are particularly useful since every 

complex domain can be accurately triangulated using sufficient number of triangles. It 

is also customary to use combined meshes made up of rectangular elements for the 

interior points and triangular elements for the boundaries, wherever the degree of 

accuracy permits such a selection. The above discussion is well applicable to higher 

dimensional problems. The tensor product of one-dimensional linear shape functions 

usually generates multi-dimensional shape functions, such as bilinear shape functions. 

Higher order polynomial shape functions are constructed in a similar fashion. 

The exponential fitting method involves the inclusion of the sophisticated functions, 

such as exponential functions, in the definition of the shape functions, so that the 

shape functions are able to capture the variations of the problem. However, as we 

have seen earlier, a systematic derivation of these functions at the element level 

requires the analytical solution of a local differential equation subject to homogeneous 

boundary conditions (residual free bubble functions). Solving such local problems 

analytically becomes tedious and far from trivial in multi-dimensional spaces. An 

alternative approach to get around this difficulty is to s()lve an analogous ordinary 

differential equation and then use the tensor product to generate the multi-dimensional 

exponential fitting. However, as we have already seen in section (2.7), the 

multiplicative model mayor may not satisfy the original PDE and its boundary 

conditions. Solution of practical multi-scale problems addressed in [28] resort to the 

Taylor series approximation of the local residual free bubbles. The presented method 
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therein, is not residual free anymore; however, it owns the merit of practicality 

towards the solution of ill-natured problems. This approach shows that in order to 

obtain practical schemes with satisfactory solutions, it is possible to adopt a 

polynomial approximation of the residual free bubble functions combined with 

reasonably refined meshes. This, in turn, gives rise to the idea of approximating the 

residual free bubble functions with an optimal polynomial of a prescribed degree. 

Using the method of least squares minimization, is therefore a natural selection when 

it comes to an optimal polynomial approximation. As we have seen in previous 

Chapters, the least squares polynomial approximation of the residual free bubble 

functions not only offers a practical solution to the problems under study, but also it 

yields the optimal polynomial approximation from all square integrable functions in 

an interval. The selection of such polynomial bubble functions in one dimension 

required the polynomial to vanish at the element boundary. The computations, cost 

less if the trial polynomials are selected from an orthogonal set of functions. The 

selection of multi-dimensional orthogonal families of polynomials is not as 

straightforward as in the one-dimensional case. However, the tensor product of the 

one-dimensional functions readily offers the multi-dimensional trial polynomials. For 

example, consider a typical two-dimensional element Q, =[O,ljx[O,hjwith the 

nodes situated on( 0,0 ),(1,0 ),( O,h ),( l,h). The one-dimensional polynomial bubble 

functions in each direction are: 

N M 

P,( x)= l>nxn( l-x)and Q,( y)= L,b,y' ( h- y) 
n=1 k=1 

where {a.}, {b, } are found in the exercise of the least squares minimization. The two-

dimensional trial polynomial in form of a complete polynomial is defined as: 
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N M 

B,(x,y)=LLa,bkx"(I-x)/(h-y). Incomplete polynomials In terms of two 
n::l k:=i 

variables x and y can be used providing that they vanish at element boundary. The 

numbers M and N are selected in such a way that the required resolution in x and y 

directions is maintained. 

4.5 Derivation of least squares bubble functions for multi-

dimensional problems: rectangular and triangular elements 

From the discussion presented in section (4.4) we are able to draw conclusions 

towards the derivation of polynomial bubble functions for multi-dimensional 

problems. Two approaches seem possible: direct derivation of the bubble functions by 

the method of least squares and using the tensor product of the one dimensional least 

squares bubble functions. Here, we shall briefly discuss two methods and derive the 

bubble functions accordingly. Let us consider first, the idea of direct derivation of the 

bubble functions by the method of least squares. 

We present the technique in the context of an example, though, this technique can be 

generalized to some extent to other cases. Consider the following two-dimensional 

boundary value problem: 

()2U ()U 
= 

()x 2 ()y 

u(x,t) = f(x) 0 $ x $I,t = 0 

U(x,t) = 0 

u(x,t) = 0 

x=O,t~O 

x=l,t~O 

(4.56) 

and let the finite element discretization of the equation domain in the x and y 

directions be 0 = Xo < XI < ... < x, = axand 0 = Yo < YI < ... < Ym = by, respectively. 

Also, consider a typical standard rectangular element of the mesh (x, y)E [O,I]x[O,h] 
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and let the standard two-dimensional approximation be defined in the usual way: 

A l-xh-y l-xy xh-y xy 
u(x,y) =----u(O,O) +---u(O,h)+---u(l,O) +--u(l,h) Similar to the 

I h I h I h lh 

one-dimensional case we add the bubble function contribution in such a way that the 

additional term vanishes at the element boundaries and its effects are optimal in the 

sense of generating least approximation error: 

A l-xh-y l-xy 
u(x,y) =---u(O,O)+--u(O,h) 

I h I h 
x h- y x y 

+---u(l,O) +--u(l,h)+c x y(l- x)(h- y) 
I h I h 

(4.57) 

It should be noted that the selection of the additional term is not unique in this case 

and any suitable polynomial function that vanishes at the element boundaries can be 

chosen, depending on the required resolution in each space directions. 

Replacement of the approximation (4.57) into equation (4.56) generates the 

approximation error: 

A A 

R=a
2
u_au 

ax2 ay' 
for which we introduce the two-dimensional 

analogous of the residual functional defined by equation (3.22) in Chapter 3 for one-

dimensional cases: 

1'1h , J = 0 0 R-dydx. (4.58) 

Minimization of this residual functional within the limits of selected element and with 

respect to the unknown parameter c (i.e. aJ = 0), 
ac 

yields the bilinear bubble 

coefficient: 

15{u(O,O) - u(O, h) + u(l,O) - u(l,h)} c = -,--:....c.-'--.o....;.-C...--:-'-'-_"':"":--'....:.. 
h{l" +12h2} . 

(4.59) 

Higher order polynomial bubble functions can also be computed in a straightforward 

fashion, similarly. Equation (4.59) shows that the bubble function coefficient (and 
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hence the bubble function itself) can be written In a combination of four other 

elemental nodes that makes possible the process of static condensation. 

In the example just gi ven, we demonstrated the straightforward procedure of 

derivation of least squares quadratic bubble functions for standard rectangular 

elements. However, it is worthwhile to consider the eventualities in which the selected 

element is a triangle in the two-dimensional plane. As it will be shown, this process 

only slightly differs from the rectangular case. Employing the notations for our 

purpose, we recall that the standard triangular element is the area of all pairs 

(X,y)E [O,llx[O,hlsubject to the constraint of x +1.::; I. In such a case, the standard 
1 h 

approximation is given by 
, x y x y 
u(x,y) = -u(l,O) +-u(O,h) + (1----)u(O,O). The 

1 h 1 h 

simplest quadratic bubble function can therefore be augmented in the following way: 

, x y xy xy 
UT (x, y) = T·u(I,O) + -,;.u(O,h) + (I-T- -,;).u(O,O) + cxy(I-

T
--,;) (4.60) 

with the intention to find the optimal value of c, the bubble coefficient, by which we 

seek to reduce the approximation error within the element level. Substitution of the 

approximation (4.60) In the original differential equation (4.56) 

, , 

RT = a
2 

~T _ aUT results in the following residual functional: ax ay 

f h(l~) 
J = r r I R2 dxdy 

T JoJo T 
(4.61) 

to be minimized. Differentiating from (4.61) with respect to unknown parameter c and 

making the result identical to zero, we find the solution: 

- 601 {u(O, h) - u(O,O) I 
c= 

14 -6h1 2 +60h 2 
(4.62) 
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which represents the bubble function coefficient corresponding to the particular 

selection of approximation (4.60). 

The second approach that we will shortly describe, provides an alternative to the 

derivation of the polynomial bubble functions based on the technique proposed in 

[28]. We will briefly outline their approach towards the derivation of practical bubble 

functions and will introduce our technique afterwards. 

To this end, consider the steady state diffusion-reaction equation in Qc R' written in 

dimensionless form as: d'~ + d'~ - Dau = f, subject to the prescribed boundary 
dx dx 

conditions. The approach adopted for the derivation of practical bubble functions 

requires the analogous one-dimensional equations: 

jd'N 
dx" - Da N , = ° for xE [O,l] 

N, (0) = 1, N, (I) = ° 
and (4.63) 

jd'N 
dx' ' - Da N , = ° for XE [O,l] 

N 2 (0) =0, N 2 (l) = 1 

to be solved at the element level, in order to extract the bubble shape functions. With 

the characteristic element length l, the solution of the above equation is: 

sinh(!D:(l-x)) 
N, (x) = -----''---''=~-

sinh(.J Da l) 

sinh(!D:x) 
N,(x) = a 

sinh(.J D.f) 

(4.64) 

In order to turn the elemental bubble functions into a practical format, the Taylor 

series expansion of the bubble functions are used and truncated after a selected 

number of terms. Hence, bubble functions are converted into polynomials, suitable for 

use in quadrature methods in finite element programs. Finally after the truncation, 
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bubble functions are derived expressed as polynomials, for example the third order 

polynomial bubble functions are: 

N(x)=I-x 
I I 

x(l- x)(21- x) 

I(~+n 
Do 

N
2
(x) = x _ x(l-x)(I+x) 

I I(~+IZ) 
Do 

(4.65) 

Recalling the set of equations (4.63), our aim is to approximate the solution of this 

system with optimal least squares fitted polynomials (i.e. polynomials satisfying the 

best approximation property). Carrying out such an approximation, enables us to 

derive practical bubble functions expressed as polynomials and yet avoid from 

solving directly the set of equations (4.63). In order for the future comparisons, we 

will derive the third order least squares approximations to the solution of (4.63). 

Consider the following third order approximations: 

j 
I-x 

NI (x) = -1- + ro:(I- x) + fJxz(I- x) 

X J.. Z N z(x)=-+/U(l-x)+J1X (I-x) 
I 

(4.66) 

By replacing these approximations into the system (4.63) and minimizing the residual 

functionals by the method of least squares the following approximations are obtained: 

I-x 
NI (x) = --+ ro:(I- x) + fJx z (1- x) 

I 

a= 
2Do (3D:1 6 + 260D;1 4 + 6720D.z 2 + 50400) 

(D;14 + 120 + 20D.zz)(D;14 + 2520 + 84D.zz) 

_ 7Do(60+D.z 2
) 

fJ - I(D;14 +2520+84D.z 2
) 

and 
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N,(x) = x +J.x(/-x)+px'(/-x) 
t 

A =_ Da(D~t6 +40D;t
4 

-4200D)' -50400) 

(D;t4 + 120 + 20D)' )(D;t4 + 2520 + 84D.!') 

7Da(60+D.i') 

Chapter 4 

(4.68) 

Higher order polynomial bubble functions are derived similarly. Multi-dimensional 

bubble functions, can be derived using the tensor product of one-dimensional 

functions, if the second approach is taken for derivation of the bubble functions. 

4.6 A benchmark problem 

We start with the analytical solution of a two dimensional convection-diffusion 

problem given in terms of the following PDE [22]: 

d'9+ d'9_ k d9_ k d9=0 
dx' dy' 1 dx ' dy 

(4.69) 

where <I>(x , y) E 9\ = [0,1] x [0,1] 

and kl' k2» 0 

Equation (4.69) should be solved subject to the boundary conditions of: 

$(0, y) = $(x, 0) = 1 (x, y;t 1) 

<I>(1,y)=<I>(x, 1)=O(x ,y;tO) 

<1>(0,1) = <1>(1, 0) = \12 

Suppose that: 

9(X,y) = X(x)Y(y) (4.70) 

Substituting equation (4.69) into equation (4.70) gives 

X "-k X' Y"+k Y' __ 1,--=_ , 

X Y 
(4.71) 
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which gives: 

X"-k X'-MX-O , - (4.72) 

Y"-k Y'-MY - ° 2 - (4.73) 

where M is a constant value. 

These ordinary differential equations give the following 

(4.74) 

Y(y) = e 2 Ce,ki +4M /2 + De -,ki+4M /2 
k 2 Y [ r.;-c-:-:-: y / r.;-c-:-:-: y / ] 

(4.75) 

(i) $=0 (ii) $=0 

$=0 $=1 $=0 

$=1 $=0 

9(x, 0) =1 0< x <1 rfJ(0, y) =1 0< x <1 
9(x, 1) = 9(0, y) = 9(1, y) = 0 rfJ(x, 0) = 9(x, 1) = 9(1, y) = 0 

The solution of (4.69) excluding the points (0,0), (0,1) (1,0) which are dealt with 

separately is given as the sum of the solutions of (i) and (ii). 

Consider case (i) first - we have 

X(O) = X(I) = 0 (4.76) 

The form of the solution in equation (4.74) is dictated by the sign of k,2 +4M 

If k,2 + 4M is positive we have 

k'X[ ~e +4M ~e +4M ] 
X(x)=e 2 (A+B)coSh '2 x+(A-B)sinh '2 x (4.77) 

104 



Chapter 4 

~kJ2 +4M 
from equation (4.76) X(O) = 0 gives A+B=O and X(l) = 0 gives sinh x = 0 

2 

in this case A-B=O for non-trivial solution therefore in this case it is impossible to 

give any real answers. 

If k
J

2 +4M is negative we have from equation (4.74) 

(4.78) 

or 

(4.79) 

From X(O) = 0, A+B=O and X(I)=O gives 

n =1,2, ... (4.80) 

and we have 

k,x 

X (x) = (A - 8)ie"2 sin(n71X) (4.81) 

and k
J

2 +4M < Ois the only possible case. We define 

(4.82) 

Similarly for constants C and D equation (4.75) gives 

(4.83) 

Using Y(l) = 0 gives C' = 0 thus 

k,y ( (1- 1)/) Y(y) = D' e 2 sinh .J An Yh (4.84) 
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We do not require any condition on Yea) since Yea) = ° ensures 11>(0,0) = 0. Thus for 

constant a 

~ ((1- 1)/) ~,(x,y)=ae 2 sin(m)sinh .JAn Yh (4.85) 

The most general solution for boundary conditions given by (4.70) is a linear 

combination of the particular solution i.e. 

(4.86) 

where the coefficients Cn (n=I,2, ... ) are determined from lI>(x,O) = I using orthogonal 

functions and Fourier Series techniques. Putting y=O and bn = en sinh(.J An / 2) we 

obtain: 

00 k1x 

~,(x,O) = ~)"e "2 sin(m) = 1 (4.87) 
,,=1 

kLx k1x 

functions e 2 sin(nJ1X) and e 2 sin(mm) are orthogonal with respect to e-k,x (positive 

k,x 
weighting). Thus simplifying equation (4.87) bye' sin(mJ1X), weighting by e -k,x 

and integrating over intervals 0--71 gives 

1 k1x k1x I k1x 

L)nf e-k,xe"2 sin(m)e"2 sin(mm)dx = f l.e-k,xe"2 sin(mm)dx 
o 0 

this term on the left hand side of equation (4.88) except for m=n. 

And 

I 1 k1x 

bn f sin' (nm)dx = f e-' sin(nm)dx 
o 0 

l~ 

fe' sin(nm)dx 
b = -"-0-,-____ _ 

n , 

f sin' (nm)dx 
o 

8nn-[l- (-I)" e -k,/2] 
k,' +4n'n' 
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and equation (4.86) becomes 

(4.91) 

in an identical manner we obtain $2(X,y) the solution for case (ii). The general 

solution of equation (4.69) is then the sum of $, and cI>z plus the values of $ at the 

points (0,0), (0,1) and (1,0) and is given by 

$(0,0) = 1, $(0,1) = $(1,0) = \12 

(4.92) 

Boundary conditions at points $(0,0) = 1, $(0,1) = $(1,0) = \12 must be fixed and k, is 

small 

k'X[~] k,y [ ~] __ 8n11E 2 1-(-I)"e 2 sin(nx) __ 8n11E 2 1-(-I)"e 2 sin(ny) 

(b(x,O)-~ k,2 +4n2Jr2 ,(b(O,y)-~ k; +4n2Jr2 

~ n sin(nx) 
L... k2 4 2 2 
n=) 2+ n1l 

(4.93) 

If the PDE has a term such as Q included in the RHS of equation (4.69) a complete 

solution will require the addition of the below source term to equation (4.93). 
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4.7 Least squares bubble functions for convection-diffusion problem 

A different solution for the problem represented by equation (4.69) can be obtained 

using a domain discretization. This has the advantage that it can be used to obtain 

solutions under more general boundary conditions than the specific conditions that 

were used to generate the previous results. The solution can also be extended to 

irregular domains. However we will use a square domain and boundary conditions 

similar to those given previously to be able to directly compare these solutions with 

the analytical results. 

We shall derive the least squares bubble functions for the use in finite elements 

approximation by setting kl = k2 • Therefore, equation (4.69) becomes: 

a
2
u + a

2
u_ k(au + au)=O 

ax2 ay2 ax ay 
u(O, y) = u(x,O) = 1 x;t 1, yid 

u(I, y) = u(x,I) = ° x;t 0, y;t ° 
1 

u(o,!) = u(l,O) = -
2 

(4.94) 

Consider the finite element discretization of the problem domain In the x and y 

directions with rectangular elements: 

0= Xo < Xl < ... < xn = 1, ° = Yo < Yl < ... < Ym = 1 where within a typical element we 

have (X,y)E [O,ljx[O,hj. Let us consider the standard linear approximation shape 

functions enriched with the bubble function given by: 

• xy l-xy 
u(x, y) = --u(l,h) + --u(O,h) 

l h l h 
xh-y l-xh-y 

+T-h-u(l,O)+-l---h-u(O,O)+cxy(l-x)(h- y) 

(4.95) 
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The residual generated from replacement of approximation (4.95) into equation (4.94) 

and the functional to be minimized with respect to unknown bubble function 

coefficient are: 

and 

J= U>2dydx 

respectively. Minimizing J to find the bubble coefficient results in: 

5k 
c=----~~----~~~~~~--~~ 

Ih(20h 2/ 2 +12(14 +h4)+h4/2k' +h 2/4k')' 

{(3/ 3 +3h 3 +3/ 2 +k1 2h 2 +3Ih 2)u(0,0) (4.96) 

+(-3/ 3 +3h 3 +3/ 2 _k1 2h2 -3Ih2 )u(0,h) + (3/ 3 -3h3 -3/2 _k1 2h 2 +3Ih 2 )u(l,0) 

+(-3/ 3 -3h 3 -3/2 +k1 2h 2 -3Ih2)u(l,h) } 

We are interested to solve the equation (4.94) by setting k=2.5 and h=I=O.2 for a 5x5 

finite element mesh made of equal sized rectangles. We will find the nodal values by 

use of linear and bubble enriched elements and compare the results against the 

analytical solution. The bubble coefficient in this case becomes: 

c = 78125 u(O 0) _ 71875 u(/,h) _ 3125 u(O h) _ 3125 u(l 0) 
178 '178 178' 178 ' 

and the elemental bubble enriched approximation becomes: 

• 78125 
u(x,t) = {25---(0.2-x)(0.2 - y»).x.y.u(/,h) 

178 
3125 

+ {25 --x(0.2 - y»).y.(0.2 - x).u(O,h) 
178 

78125 
+ {25---y(0.2- x»).x.(0.2 - y).u(/,O) 

178 
78125 

+ {25 + --x y}(O.2 - x)(0.2 - y) )u(O,O). 
178 

(4.97) 

(4.98) 

Note that for the sake of simplicity, we have kept the notations indicating operation of 

function u on the nodal points (i.e. u(l,h), u(I,O), etc). 
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The nodal values u(l,h), u(O,h), u(l,O), u(O,O) for each element should be calculated 

via the application of weighted residual technique and from given boundary 

conditions. The weak formulation of equation (4.94) is: 

J,
'J,h a'u a'u au au 

0= w.(-+--k(-+-))dydx 
o 0 1 ax' ay' ax ay 

(4.99) 

Application of Green's integral theorem in this case, converts the weak formulation 

into the following reduced form: 

J,' J,h aw j au aw j au J,' J,h au au J, au du (--+--)dydx+k w(-+-»dydx= w(nx-+n -)ds 
o 0 dx ax ay ay 0 0 1 dx ay r 1 dx Y dy 

where nx,ny ,ds are the components of the unit normal vector n = n) +n) on the 

boundary r', and ds is the arc-length of an infinitesimal line element along the 

boundary. Let us select the weight functions: 

xy 
w =--

1 I h' 
I-x y 

w =---
, I h' 

xh-y 
w =---

3 I h ' 
I-xh-y 

w =----
4 I h 

identical to the linear (two-dimensional)shape functions. The weak formulation (4.99) 

with the exercise of Green's integral theorem result in the local element matrices as: 

19349 -4811 -4811 -9727 u(O,O) 91 

32040 32040 32040 32040 
-13 2 -1 -7 u(O,h) 9" -- -
60 3 3 60 = (4.100) 
-13 -1 2 -7 

- - u(l,O) 9m 60 3 3 60 
-11873 -5869 -5869 23611 

32040 32040 32040 32040 u(l,h) 9/V 

It can be observed that we have obtained a 4x4 matrix corresponding to every node of 

the each rectangular element. Performing the assembly of local matrices is a tedious 

task if carried out by hand specially for large number of elements. However their 

evaluation can be easily accomplished using a computer program. With k= 2.5 the 

convection terms are comparatively small and the linear interpolation and the bubble 
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enriched elements obtain reasonable solutions as compared to the exact analytical 

results. It is a well known fact that, however, for higher values of k the linear and 

classical Galerkin treatments fail. The least squares bubble functions have the 

property of minimizing the approximation error in a uniform sense. Therefore, with 

the use of a relatively crude mesh in multi-dimensional problems low order least 

squares bubble functions (e.g. quadratic) turn to an awkward approximation. 

However, the least squares bubble functions prove to be very effective tools and 

superior to the standard approximations when employed in higher degrees (e.g. cubic, 

quintic, etc) and the computational mesh is not coarse. In such an environment, the 

least squares bubble functions act in a hierarchical way meaning that the contribution 

of very high order polynomials is of diminishing importance. The following tables 

and charts compare the performance of the linear standard and least squares bubble 

function approximations against the exact solution, for the above two-dimensional 

example. 

x=O.OS u(x,y) u(x,y) u(x.v) 

y Linear Bubble Exact 

0 1 1 1 

0.05 0.8961721371 0.8865448553 0.886754727 

0.15 0.8796370948 0.8742811656 0.87419473 

0.25 0.8631020526 0.8595461702 0.859597615 

0.35 0.8465670104 0.8423398692 0.842622801 

0.45 0.8300319682 0.8226622625 0.822818793 

0.55 0.8008270582 0.7995354646 0.799592276 

0.65 0.7630845854 0.7734094675 0.772156048 

0.75 0.7253421125 0.7398308440 0.73943447 

0.85 0.6875996397 0.6987995942 0.699870348 

0.95 0.6498571669 0.6503157180 0.650959086 

1 0 0 0 
Table 4A 

Solution profile at X = 0.05 
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:=0.95 u(x,y) u(x,y) u(x,y) 

y l.inear Bubble Exact 

0 

0.05 0.6803819251 0.6802809517 0.680628372 

0.15 0.6543645168 0.6545155494 0.654958596 

0.25 0.6283471085 0.6295393891 0.630975318 

0.35 0.6023297002 0.6053524710 0.60688213 

0.45 0.5763122919 0.5819547950 0.581648018 

0.55 0.5456988321 0.5544406338 0.554596691 

0.65 0.5144204044 0.5247536262 0.525262075 

0.75 0.4831419768 0.4926842798 0.493335749 

0.85 0.4518635491 0.4582325946 0.458651484 

0.95 0.4205851215 0.4213985707 0.42118422 

0 0 0 
Table 4.5 

Solution profile at X = 0.95 

y=0.95 u(x,y) u(x,y) u(x,y) 

x linear Bubble Exact 

0 

0.05 0.6498571669 0.6503157180 0.650959086 

0.15 0.626087601 0.6232363536 0.623430518 

0.25 0.602318034 0.5983092201 0.599241791 

0.35 0.578548468 0.5755343174 0.576774527 

0.45 0.554778902 0.5549116455 0.554936298 

0.55 0.529141098 0.5326911864 0.532802638 

0.65 0.502002104 0.5099444765 0.509456763 

0.75 0.47486311 0.4838134705 0.483892762 

0.85 0.4477241155 0.4542981686 0.454938976 

0.95 0.4205851215 0.4213985707 0.42118422 

0 0 0 
Table 4.6 

Solution profile at y = 0.95 
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Exact solution 

Figure 4.8 
Exact solution of problem (4.94) 

Bubble Enriched solution 

Figure 4.9 
Bubble·enricbed solutioo of problem (4.94) 

Linear solution 

Figure 4.10 
Linear finite element solution of problem (4.94) 
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ChapterS 

Conclusions and suggestions for future research 

In this Chapter the main objectives, motivations and conclusions drawn from the 

present research are explained and discussed. Furthermore, potentials and possibilities 

for the continuation and extension of this work are highlighted. 

5.1 Conclusions 

In this thesis, a novel bubble function scheme for the finite element solution of 

engineering flow problems is developed and successfully applied to a range of 

problems encountered in the modelling of engineering processes. This scheme is 

based on the idea of the residual free bubble functions that is widely used towards the 

study and modelling of multi-scale problems. The scheme results in a feasible 

alternative for existing sophisticated techniques and acquires good degree of accuracy 

as well as computational time effectiveness. Theoretical multi-scale methods are not 

broadly applied to practical problems and implementation of these methods are hardly 

achieved. The main burden on these methods is their excessive refinement of 

computational mesh which turns to impracticality due to the required amount of time. 

The main aim in this research is to find (or at least get closer to) a point of equilibrium 

of the approaches using h-version finite elements and p-version finite elements. The 

present technique, incorporates the ideas of polynomial approximation with the 

method of least squares, the Galerkin finite element technique and the bubble enriched 

finite elements to develop an optimal practical enriched scheme. Finding a polynomial 
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fit for the elemental bubble function with the method of least squares error 

minimization, enables us to increase the accuracy of approximation without incuning 

excessive mesh refinement. On the other hand, the error analysis of the least squares 

polynomial fits, provides us with an estimation on the highness of the degree of 

approximant polynomial. This selection informs us of the potentially over-estimations 

such as over-smooth solutions or super convergent results. 

In this work a novel technique for derivation of practical bubble functions, expressed 

as polynomials, is developed and applied to a range of flow problems including the 

problems belonging to the family of diffusion-reaction. Along with the progress of 

this work, the following conclusions are drawn: 

• As far as the issues of practicality and applicability in finite element packages 

are concerned, polynomials are natural selections to approximate the residual 

free bubble functions. 

• Since all the hyperbolic, exponential and other smooth transcendental 

functions can be approximated by the families of polynomials, construction of 

such families with higher convergence rate will produce sufficiently 

satisfactory approximation results. 

• The generated error of replacing the approximant into the model equation, can 

be minimized in a uniform sense by the use of least squares minimization. 

• Higher order least squares polynomial bubble functions can be derived with no 

major theoretical or practical difficulty. 

• The least squares bubble functions, can be equally used for approximation of 

the solution of equations that are usually expressed as special functions. 
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• With the use of least squares bubble functions, the direct solution of local 

residual differential equations are avoided, which is a major benefit in multi­

dimensional equations. 

• Extension of the idea to multi dimensional problems is possible as direct least 

squares derivation of bubble functions or tensor product of the analogous one­

dimensional equations can be used to construct two or three dimensional 

elements. 

• The idea is also applied to the transient problems and is found superior to the 

classical linear finite elements. 

5.2 Future work 

The idea of minimization of the approximation error based on the method of least 

squares is supported by the substantial theory of best approximations in function 

spaces. Construction of least squares bubble functions, on the other hand, is carried 

out in a straightforward fashion. There are numerous model equations in engineering 

problems that are categorized as multi-scale problems. To achieve a satisfactory 

practical numerical solution for these problems it is required that the technique to be 

tested for different categories of models including different types of ODE and PDEs 

(hyperbolic, elliptic, etc) and linear or nonlinear problems. This assessment will shed 

light on the abilities and limitations of the method of practical bubble functions. 

Performing a comprehensive error analysis in order to work out the span and rate of 

convergence of the schemes that are produced by least squares minimization, will be 

illustrative when compared to other numerical schemes. This can lead us to the clever 

selection of polynomial families weighted in an appropriate way to be employed as 

117 



Chapler 5 

the base bubble functions. Extension of the least squares bubble functions to three­

dimensional problems and tetrahedral elements is to be investigated in possible future 

research projects. 
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Paper One 

A novel method for the derivation of bubble functions using the 

Method of Least Squares 

International Congress of Mathematicians, ICM 2006 Madrid, Spain 

A.Yazdani*, V. Nassehi, R. J. Wakeman 

Department of Chemical Engineering, Loughborough University, 

Loughborough, Leicestershire, LEII 3TU, UK 

A.Yazdani@lboro.ac.uk* 

The multi-scale nature of certain differential equations and the absence of analytical 

solutions to majority of these equations have given impetus to the advent of the 

bubble enriched finite element techniques. These elements are mainly constructed by 

the residual free bubbles (RFB) originally proposed by Hughes et. al. [I] and recently 

extended to practical problems by Parvazinia et. al [2]. 

The RFB method is based on decomposing the solution of a model differential 

equation into two parts within each element. These parts represent coarse and fine 

phenomena, respectively. The standard piecewise linear component represents the 

coarse scale, while the analytical solution of the equation using homogeneous 

boundary conditions (i.e. residual-free bubble) captures the fine scale. 

This method yields stabilising parameters as well as a high degree of accuracy in the 

solution of ill-conditioned differential equations. However, the required work to 

derive the bubble which involves analytical solution of the fine scale becomes 

cumbersome to say the least. 

In the present work a novel method for the derivation of the bubble function is 

suggested which employs the least squares minimisation of the error generated by 
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substitution of a trial solution into the primary boundary value problem. This method 

avoids the use of an analytical solution and therefore it provides a technique for the 

extension of the bubble function method to more realistic problems. 

The method is used to solve a number of boundary value problems and is shown to be 

accurate and reliable. 
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Paper Two 

Derivation of the residual free bubbles using the Method of Least 

Squares 

57th Midwest PDE Seminar, April 2006, University of Chicago Illinois, US 

AIireza Yazdani 

Department of Chemical Engineering, Loughborough University, Loughborough, 

LEI13TU, UK 

A.Yazdani@lboro.ac.uk 

Abstract. The Galerkin's method of weighted residuals is based on local 

approximation of the solution of a given differential equation, where this 

approximation is obtained from substitution of a piecewise linear interpolation into 

equation. Nodal values of the piecewise solution are obtained throughout a reduction 

of the problem to a linear system of equations. The locality is then resolved via an 

assembly process, which, along with other steps, form up the very concept of Finite 

Element Method. 

The so called "bubble function" method is developed from the idea of enrichment of 

the interpolation base functions by addition a bubble function, normally coming from 

an infinite dimensional augmented linear space, so that this bubble function takes zero 

at element boundaries which in turn, confines the generated approximation error 

inside the element as well as relaxing the non-homogeneity of the original boundary 

conditions [1- 2]. 

Ideally, the bubble function is the analytical solution of the residual differential 

equation, subject to homogeneous boundary conditions. However, the analytical 
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solution is hardly obtainable in general, and as is the case in many practical situations, 

a simple polynomial approximate form is needed for computational purposes. Many 

people adopt the aforementioned approach to treat differential equations numerically 

within the context of finite element modelling of physical phenomena. 

In this work we assume a polynomial form of the bubble function and derive the 

approximate polynomial form of the practical bubble, using the method of least 

squares. This method turns out to yield high degree of accuracy, capability of 

generalization to higher dimensions and non-linear differential equations as well as 

being computerizable, where suggest a benchmark for dealing with different classes 

of differential equations. 
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Paper Three 

Solution of a Scalar Convection-Diffusion Equation Using FEMLAB 

FEMLAB users Conference, October 2005, Hyatt Regency, Boston, US 

A. Yazdani* L. Shojai 

Department of Chemical Engineering, 

Loughborough University, 

Loughborough, LEll 3TU, UK 

A.Yazdani@lboro.ac.uk 

ABSTRACT 

A steady scalar convection-diffusion problem has been studied for one and two 

dimensional cases. The major problem of unrealistic oscillations of the convection 

dominated problems is relaxed thanks to the wide range of the elements FEMLAB 3.1 

benefits. The FEMLAB 3.1 solution has been presented for the problems, unique 

features and illustrations of the software have been used and results have been tested 

against analytic solution. 

Keywords Convection-Diffusion, Convection -dominated, FEMLAB 3.1 

1. Introduction 

Processes involving a combination of convection and diffusion are ubiquitously found 

in physical and engineering problems. These problems occur in many applications 

such as in the transport of air and ground water pollutants, oil reservoir flow, in the 

modelling of semiconductors, and so forth. Convection is a physical process by 

which some property is transported by the ordered motion of the flow, while diffusion 
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is the physical process by which the property is transported by the random motion of 

the molecules of the fluid. The behaviour of fluid undergoing mass, vorticity, or 

forced heat transfer is described by a set of partial differential equations which are 

mathematical formulations of one or more of the conservation laws of physics. These 

laws include those of conservation of mass, momentum, and energy. The numerical 

solution of convection diffusion equations whose first derivative have large 

coefficients (convection dominated) presents difficulties such as parasitic oscillation 

and instability. Several finite element treatments of the problem have ever been tried 

and developed, including upwinding techniques, Petrov-Galerkin approach and 

artificial diffusivity method, and the more recent stabilized methods. FEMLAB 3.1, 

takes the advantage of employing these methods in a very straightforward and user-

friendly way. The obtained results are therefore, as reliable and accurate as the results 

based on the most recent techniques, bearing in mind that all code developments and 

programming works are already done. 

2. Statement of the Problem 

The general steady linear problem on a bounded domain is of the form 

- tV.(a'Vu) + 'V.(bu) + eu = S ill n 

all 
u=u B onaQn' -=0 Oil an", all 

(2-1) with boundary conditions 

(2-2) 

where anD.an, form a partition of the boundary of Q in which an" is non-empty. 

We usually assume that the advective velocity field b is incompressible, 'Vb = 0, so 

that the convective term can also be written b.'Vu , and also a(x);:: I.e(x);:: 0 while c is a 

small positive constant [2). 

First we consider the one dimensional differential equation: 
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d'u - du . 
--b(x)-~S(x) mQ~[O,ll (2-3) 
dx' dx 

subject to the given boundary conditions u(O) ~ I, u(l) ~ O. We assume that the 

convective tenn b(x) is a constant and there is no source tenn, i.e. S(x) ~ O. In this case 

the analytic solution of equation (3-2) is given as: 

•• • e -e 
u(x)~--.-. 

I-e 
(2-4) 

Numerical schemes successfully cope with such a simplified linearized equation. 

Setting b=50, and using predefmed cubic Lagrange element, FEMLAB 3.1 returns: 

number of elements: 30, number of degrees of freedom: 91, solution time: 0.032 

Seconds, for which the stationary analysis, Coefficient forms, PDE module, has been 

used. Figure 1. depicts similarity of analytic solution and FEMLAB result. 

O.B 

0.6 

0.4 

0.2 

, 
1I(~). 1 D. b---50 

La. Analytic result b=5U 

-.... \ 

I.b. FEMLAB result b=50 

\ , 
I 

\ 
I 
I 
I 
I 
I 

Figure 1. Comparison of analytic and FEMLAB results 
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The solution (using cubic Lagrange elements) IS fast, accurate and highly reliable 

compared to the analytic solution. 

3. Two dimensional test problem 

Two dimensional convection-diffusion problem is represented by: 

a'lI + a'lI -b all -b au = s . 
ax' ay' , ax ' ay (3-1) 

Unlike the one dimensional case, it is not very easy to invent a range of two 

dimensional problems with ready analytical solutions. As a test problem we study the 

convection-diffusion model of (3-1) with constant b and no source term, over the unit 

square. For this purpose we set b, = b" S = 0, Q = [O.l]x[O,I] subject to the following 

Dirichlet boundary conditions: 

{

U(X.l) = 0 = u(1, y) 

u(x,O) = 1 = u(O, y) . 

11(0.1) = 0.5 = 11(1,0) 

(3-2) 

We shall simply write: 

{
Y"u -bY'u = 0 

B.c. 
(3-3) 

(which can be interpreted as the energy conservation equation with no heat source 

term). By the method of separation of variables the analytical solution of (3-2) is 

given by: 

.:! b(.r+y) 

~I (1-(-I)"e' )8111I'e' I 
II(X,y) = L.. 

-, Sinh(JA: )(b' +41l'tf) 
2 

JA:(l-y) 
sin(il1Z'x)sinh(') (3-4) 

2 

JA:(l-x)J 
+sin(il1l'y)sinh( 2 1 
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where A. = 2b' + 4n'n-' > o. The common higher degree inteIJ.lOlation functions give 

acceptable solution for value of -40';;b';; 40, but show oscillatory behaviour for larger 

b, i.e. the convection dominated cases [3 & 5]. One of the treatments to the 

mentioned problem is to employ the so-called bubble function method, under the 

more general title of "stabilization teclrniques", in which the inteIJ.lOlation element 

includes some special element types in addition to the standard Lagrange elements. 

These elements are potentially useful for applications in fluid dynamics [IJ. FEMLAB 

3.1, employs these elements for application modes such as incompressible Navier-

Stokes, Brinkman equations, non isothermal flow and many more, which is a novelty 

that could be extended to other eventualities. Setting b = 50 and y=O.5, 0.7 the analytic 

solution looks like what follows: 

O.B OB 

0.6 

0.' 

0.2 

U(".~). y=O 6, 20. b=60 
U(x.y). r-O.7. 20, b.o. 

2.a Analytic result, layer y=0.5 

O.B 

0.6 

0.' 

0.2 

!J(W,y), y-O.7. 2D, b-5O 

2.b Analytic result, layer y=0.7, x=O .. l 
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O.B 

06 

0.' 

0.2 

o~~~~~~~~~~~~ 
0.8 0.84 a.BB 0.92 0.96 

U(k.y). ~.7. 2D, b ... 

2.c Analytic result, layer y=O.7, x=O.8 .. 1 

Figure 2. Two dimensional test problem plotted at layers y=O.5 (2.a), y=O.7 (2.b& 

2.c) 

Solving the equation (3-3) using predefmed quintic Lagrange element, FEMLAB 

returns within 4.438 seconds using a triangular mesh of 3976 elements with 50001 

degrees of freedom Figure 3 shows the plotted solution at different boundary layers: 

~~~~~~~ 
-----_ "I 

" -------- \\ 
-----------_~ ;,1 

\ I 
I 

I 

Figure 3. FEMLAB 3.1 result, b=50, Various layers 

Equation (3-3) with large convection coefficients is known [5] to yield oscillatory 

results if treated by classical Galerkin fmite element method. Different values of y 

should be interpreted on their own. FEMLAB results at this intermediate value of b is, 

however, quite satisfactory and accurate. 

4. Conclusions 

A steady, scalar convection-diffusion model has been studied, in which the convection 

coefficient was dominant, although not very large compared to unity. Simulated 
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results were highly reliable compared to the analytic solutions, processmg and 

solution time was quite short and the software showed to be very easy to work with. 

The test problem was idealized in order to obtain analytic solutions, though, 

generalization to more complex geometries and problems is easily attainable. It was 

found that FEMLAB is a very successful modelling tool in terms of graphical 

features, coping with complex geometries, diversity of modules and models and 

specially being equipped with the stabilization techniques in many application modes. 
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Supremum and Infimum: 

Let S be a subset of 9\, the set of real numbers. We say that S has a lower bound ~ , if 

for any number a E S we have a ~ ~ . A lower bound ~ is called the greatest lower 

bound or supremum for the set S if for any other lower bound y we have ~ ~ y . The 

concept of infimum or the least upper bound is defined similarly. 

Open and closed sets: 

We call S ~ 9\ an open subset of 9\ if for every x E S there is some £ ~O such that 

the open interval (x - £ , X + £) is still a subset of S. We call 

F ~ 9\ a closed set if and only if pc (the complement of F) is an open set. 

Compact sets in 9\: 

F ~ 9\ is called compact if it is closed and bounded ( i.e. F" is open and F is included 

in a sufficiently large interval). 

Generalization to 9td
: 

By 9\ d we mean the Cartesian product of 9\, d times. Every closed(resp. open) subset 

of 9\ d is of the form of a Cartesian product of d closed ( open) subsets of 9\ . F ~ 9\ d 

is compact if and only if F is bounded and closed. A domain in 9\d is a bounded open 

set. 

Example: The set (a, b)= hE9t: a<x<br is a bounded open interval(and so a 

domain) in 9\. The set [a, b]= hE9t: a:<;xS;br is a bounded closed (and so compact) 

interval in 9t. Evidently the sets (a, b)x(c, d) and [a,b]x[c,d] are open and closed 
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subsets of 9\2, respectively. The set (a,b]=1xE9\:a<xS;br is neither a closed nor an 

open subset of 9\. 

Vector Spaces: 

Let V be a set with two operations addition(+) and scalar multiplication(.). We call V 

a vector space if for any x, y, z in V and for every A, J.l E 9\ we have: 

1) X+yE V, A E V 

2) x + (y + z ) = x + y + z =( x + y ) + z 

3) A. (x + y ) = A. x + A. y 

4) (A + J.l). (x) = A. x + J.l. x 

5) (A J.l). (x) = A. (J.l .x) 

6) There is a unique vector 0 in V, with x + 0 = x. 

7) For each x E V there is a unique vector - x, with (-x) +x=O 

8) (l.x) = x . 

Normed Vector Spaces: 

Let V be a vector space. A function N (or 11. 11) is called a norm on V (and V is 

then called a normed vector space) if: 

1) N: V~9\+ 

2) N (x + y) S; N (x) + N (y) for every x, y in V 

3) N (x) = 0 if and only if x = 0 

4) N (A. x) = 1 A 1 N (x). 
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Example: The set of real numbers with its ordinary addition and multiplication 

operations (take N = I. I, the absolute value function, resp.) is a vector space (normed 

vector space, resp.). 

Linear independence and Bases: 

Let V be a vector space. The set B (;; V is called a basis for V provided 

1) For every XEV there are 1.1 ,1.2 , ... , An E 9\ and XI, X2, ... , Xn EB such that 

X = A I X I + 1.2 X2 + ... + An Xn for some nE N . 

2) For any number m, any set { XI, X2, ... , Xm } cB of vectors and any set { AI, 

1.2, ... , Am} (;; 9\ of scalars, the equality AIXI + A2x2 + .,. + An X m= 0 implies 

that AI =1.2= ... =Am=O. 

The first property states that every member of V is a linear combination of 

members of B. The second property states that B is a linearly independent subset 

of vector space V. 

Every subset of V with these two properties is called a basis for V. 

Inner product and Orthogonality: 

An inner product < . , . > on a vector space V is a function that: 

1) <x,y+z>=<x,y>+<x,z> 

2) < AX , y > = A < X , Y > 

3) < X , X > > 0 if X * O. 

If < X , Y > = 0 then we say that x and y are orthogonal. B c V is called orthogonal if 

every distinct pair in Bare orthogonal. 
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Linear operator: 

Suppose that V and W are two vector spaces. A function T : V ~ W is a linear 

operator if 

I) T ( x + y ) = T ( x ) + T ( Y ) for every x , yE V, 

2) T ( A x ) = A T ( x ) for each XE V and AE 9\. 

Projection: 

Suppose that T : V ~ W is a linear operator. We define Kernel of T to be Ker(T) = 

{ XEV: T(x) = 0 }. Ker(T) is then a vector space itself, by addition and scalar 

multiplication induced from V and we say that Ker(T) is a vector subspace of V. 

Image of the operator T may be defined by Im(T)= { T(x): XE V } and is a vector 

subspace ofW. 

If T:V ~ V and T(T(x)) = T(x) for every XE V then we say T to be a projection on V. 

Remind that T(O) = o. 

Example: 9\ 3 is a vector space. 

Define: 

1) (x" y, ,z, ) + (X2, Y2, Z2) = (x, + X2, y, + Y2, Z, + Z2) 

2) A.( x , y , z ) = ( A.x , A.y ,A.z). 

The set { i ,j , k } is a basis for 9\ 3. In fact i= ( I , 0 , 0 ), j = ( 0 , 1 , 0) and k = ( 0 , 

o , I ) and we have ( x , y , z ) = xi + yj + zk. 

The set 9\ 3 is an inner product space if we define: 

< ( x, , y, , z, ) , ( X2, Y2 , Z2 ) > = X, X2 + y, Y2 + Z, Z2· 
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Example: 

The function T : 9\ 3 --t 9\ 3 defined by T( x , y , z ) = ( 0 , y , z ) is a linear operator 

on 9\ 3. The set Ker(T) consists of the x- axis of 9\ 3 The set Im(T) is a vector 

subspace of z-y plane of 9\ 3. 

Eigen-values and eigenvectors : 

Eigen-values are a special set of scalars associated with a linear system of equations 

that are sometimes known as characteristic roots, proper values or latent roots. Each 

eigen-value is paired with a corresponding so-called eigenvector. 

Let A be a linear transformation represented by a matrix A. If there is a vector OiX 

E 9\" Such that 

AX= "X (1) 

for some scalar" , then" is called the eigen-value of A with corresponding the 

eigenvector X. 

Letting A be a k x k square matrix: 

a2, 
(2) 

with eigen-value '" then the corresponding eigenvectors satisfy 

all al2 a" XI XI 

a21 a22 a2, x2 " 
x2 (3) 

a" a'2 a" x, x, 

which is equivalent to the homogeneous system 
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all -A a
'2 

a'k X, 0 

a21 a22 -A a2k X 2 0 
= (4) 

a" ak2 a -A kk X k 0 

Equation (4) can be written compactly as 

(A-AI)X=O (5) 

Where I is the identity matrix. As shown in Cramer's rule , a linear system of 

equations has nontrivial solutions iff the determinant vanishes, so the solutions of 

equation (5) are given by 

Det (A - AI ) = 0 (6) 

This equation is known as the characteristic equation of A, and the left-hand side is 

known as characteristic polynomial. 

For example, for a 2 x 2 matrix, the eigen-values are 

which arises as the solution of the characteristic equation 

(8) 

If all k eigen-values are different, then plugging these back in gives k-J independent 

equations for the k components of each corresponding eigenvector and the system is 

said to be non-degenerate. If the eigen-values are n-fold degenerate, then the system is 

said to be degenerate and the eigenvectors are not linearly independent. In such cases, 

the additional constraint that the eigenvectors be orthogonal, 

(9) 

Where Sij is the Kronecker delta, can be applied to yield n additional constraints, 

thus allowing solution for the eigenvectors. 

Assume we know the eigen-value for 
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AX=AX (10) 

Adding a constant times the identity matrix to A, 

( A + c I) = ( A +c ) X = A' X (11) 

so the eigen-values equal the old plus c. multiplying A by a constant c 

(cA) X = c (A X) '" A' X (12) 

so the new eigen-values are the old multiplied by c. 

Now consider a similarity transformation of A. Let I A I be the determinant of A, then 

I Z·' AZ -A I I = IZ·' (I-AI) Z I 

=1 Z IIA - A I IIZ·'I = I A-AI I (13) 

so the eigen-values are the same as for A. 

Matrix norms: 

A norm of a matrix A is of order n x n, written as IIAII, is a single number. The norm 

is a function of the element of A, and the following relations hold: 

1. IIAII ~ 0 and IIAII = 0 if and only if A = O. (a) 

2. IIcAII = Icl IIAII for any scalar c. (b) 

3. IIMBII:5 IIAII + IIBII for matrices A and B. (c) 

4. IIABII:5 IIAII IIBII for matrices A and B. (d) 

The relation in (c) is the triangle inequality. The additional condition in (d), which 

was not postulated in the definition of a vector norm, must be satisfied in order to be 

able to use matrix norms when matrix products occur. 

The following are frequently used matrix norms: 

" 
IIAII= = max II aij I (e) 

I=l 
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, 
IIAIII = max L>ij (t) 

i=l 

IIAII2 = .JX: ; X, = maximum eigen-value of AT A (g) 

where for a symmetric matrix A we have IIAII~ = 11 AliI and IIAIIz= max I A; I 

The norm IIAII2 is called the spectral norm of A. Each of these norms satisfies the 

relations in (a) to (d). The proof that the relation in (d) is satisfied for the infinity 

norm is given in example 2. 

Example 1. Calculate the 00_. 1-, 2-norms of the matrix A, where A is : 

Using the definition given in (e) to (g) we have 

IIAII~ =5 + 4 + 7 = 16 

IIAlh = 5 + 4 + 7 = 16 

The 2-norm is equal to IA31 ' and hence IIAII2 = 12. 

Example 2. Show that for two matrices A and B, we have 

Using the definition of the infinity matrix norm in (e), we have 

, 
IIABII~ = max L~) La;,bkj I 

k=l 

but then 
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n 

IIABII~ ::; max L:=J LI aik 11 bkj I 
k=1 

n n 

= max LI aik ILl bkj I 
k=1 j=l 

n n 

::; {max Llaik I} {max Llbkj I } 
.1::=1 i=l 

This proves the desired result. 

Condition number: 

For the invertible matrix A, the value K(A) = IIAIIIIA-III is called the condition number 

with respect to the norm 11.11. A matrix A is called to be well-conditioned if the value 

K(A) is close to 1, and is called ill-conditioned if K(A) is considerably bigger than 1. 

Note that for any invertible matrix A we have: 

1 = 11 I 11 = 11 A _ A·
I 

11 $11 A 1111 A·
I 

11 = K ( A )-

Notations: 

If A e X, then f[A] ={ f(x)lxE A} is a subset of Y and fl [Bl={xl f(X)E B} is a subset 

of X if BeY. fIX] will usually be called the range of f and will be denoted by Ran(f). 

X is called the domain of f. 

If AcX we define the characteristic function XA(X) as: 

1
1 if XEA 

XA(X) = 

o if xE A 
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Metric spaces: 

A metric space is a set M and a real-valued function d( ., .) on M x M which satisfies: 

1) d(x, y);::>: 0 

2) d(x, y) = 0 if and only if x=y 

3) d(x, y) = d(y, x) 

4) d(x, z) :> d(x, y) + d(y, z) [triangle inequality] 

The function d is called a metric( distance) on M. 

Sequences in metric spaces: 

A sequence of elements {Xn}-n=1 of a metric space -cM, d> is said to converge to an 

element xEM, if d(x, xn)-70 as n-7oo. We will often denote this by xn~x or 

limn __ Xn=X and say that x is the limit of sequence {Xn}-n=l. The limit of a sequence 

in a metric space is unique. 

A sequence of elements {xn} of a metric space <M, d> is called a Cauchy sequence if 

('ltE>O)(:JN)n, m ;::>:N implies d(xn, Xm)<E. 

Proposition: Any convergent sequence is Cauchy. 

A metric space in which all Cauchy sequences converge is called complete. A set B 

in a metric space M is called dense if every mE M is a limit of a sequence of elements 

in B. A function f from a metric space <X, d> to a metric space <Y,p> is called 

continuous at x if f(xn) <Y.P» f(x) whenever Xn <-'.d» x. 
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Measure theory: 

Let Xi(X) be the characteristic function of [Xi_I,Xi) except for Xn(x) which is the 

characteristic function of [Xn-I,Xn]. A function on [a,b] of the form 2:;., SiXi(X) with Si 

, 
real is called a step function on [a,b]=U[XH ,Xi] where xo=a and xl=b. 

i=l 

The family of Borel sets (Measurable sets) of 9\ is the smallest family of subsets of 

9\ with the following properties: 

I) The family is closed under complements. 

2) The family is closed under countable unions. 

3) The family contains each open interval. 

Let g be the family of all countable unions of disjoint open intervals (which is just 

the family of open sets) and let 

- -
!l (U(ai,bi )) '" 2:fl(bi -ai ) 

;=1 i=l 

(which may be infinite). For any Borel set BE g, define 

!l (B)= Inf {!l(I)1 B ~ I , I is an Interval}. 

The notion of size has four crucial properties: 

I) !l(~)=O 

2) If {A" t, is a family of Borel sets and the An are mutually disjoint 

- -
(An n Am=~, all m;tn), then !l (U A, ) '" 2: fl(A,) . 

;=1 i=l 

3) !l (B)= Inf {!l(I)1 B ~ I , I is open}. 

BI2 



Appendix B 

4) /l (B)= Sup {/l(C)1 C s;;; B, C is compact}. 

A function f is called a Borel function(measurable function) if and only if f'[(a, b)] is 

a Borel set(measurable set) for all a, b. 

Proposition: 

(a) If f, g are Borel, then so are f+ g ,fg ,max {f, g} and min{f, g}. If f is Borel and 

AE 9\, M is Bore!. 

(b) If each f. is Borel, n=l ,2,3, ... , and f.(p) ~ f(p) for all p, then f is Bore!. 

Since I~ =max {f,-f} , I~ is measurable if f is. 

As we sketched above, given 120, one can define Ifdx (which may be 00). 

If Ilfldx < 00 ,we write fEL' and define I fdx =If+ dx - If. dx where f+=max{f,O} ; f. 

=max {-f,O}. L'(a, b) is the set of functions on (a, b) which are in L' if we extend them 

to the whole real line by defining them to be zero outside of (a, b). If fE L' (a, b), we 

write f fdx = s: fdx . 

Theorem: Let f and g be measurable functions. Then: 

(a) If f, gE L' (a, b), so are f+ g and M, for all AE 9\. 

(b) If Igl::;f and fE L', gE L'. 

(c) f (f + g)dx = f fdx+ f gdx if f, gE L'. 

(d) If fdxl::; f/J~iffis in L'. 

(e) If f::; g then f fdx ::; f gdx if f and g are in L'. 
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(f) If f is bounded and measurable on -oo<a<b<oo, then fE L' and 

I r: fdxl::; Ib-al (sup If(x)l) (a<x<b). 

Theorem(monotone convergence theorem): Let fn ~ 0 be measurable. Suppose fn(P) 

~ f(p) for each p and that fn+,(p) ~ fn(p) all p and n (in which case we write fn~f). If 

Jfn(p)dp < C for all n, then fE L' and 

Jlf(p) - f n(P )Idp ~ 0 as n~oo . 

Theorem(dominated convergence theorem): Let fn (p)~f(p) for each p and suppose 

that Ifn(p)I::;C(p) for all n and some G in L'. Then fE L' and 

Definition: 

We say a condition C(x) holds almost everywhere (a. e.) if the set {x I C(x) is 

false} is a subset of a set of measure zero. We say two functions f, gEL' are 

equivalent if f(x)=g(x) a. e. (this is the same as saying J If-gl dx = 0). The set of 

equivalence classes in L' is denoted by L'. L' with the norm 11% = J I~ dx is a normed 

linear space. 

Theorem: L' is complete. 

Generalization: 

The spaces L2, ... , U (L' , ... , U ) are defined in a similar way i.e. If JI~Pdx < 00 ,we 

write fE U. U with the norm II~lp= (f Ifl P /~ dx is a normed linear space. 
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Hilbert spaces: 

Denote that every vector space V with an inner product is a normed one, if we define 

Ilxll = .J< x,x > for every XEV. Defining d(x, y)= Ilx - yll, every normed space is a 

metric space in turn. A complete inner product space is called a Hilbert space. 

Example: 

The space e plays an important role in many applications. Consider for example the 

space L2[a, b] the set of complex-valued measurable functions on [a, b], and define 

b 

<f,g>= f g(x) f(x)dx where g(x) represents the complex conjugate of g(x). It can be 
a 

shown that L 2(a, b) is a Hilbert space with norm and metric induced from the inner 

product. On the other hand if ~ is a Borel measure on 9tn and L2(9t", d~) is the set of 

complex-valued measurable functions on 9tn which satisfy flf(x)I'dfl < 00 then 
9\" 

L2(9tn
, d~) is a Hilbert space under the inner product < f, g >= f f(x)g(x)dJi. 

9\" 
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Miscellaneous 

Grad= '17= i a lax + j a lay + k a laz is a vector. 

Suppose that F= (Ft. Fz, F3)= i F!+ j Fz+ k F3 is a vector field, then 

Div(F)= '17 .F= aF! lax + a Fz/ay + aF3/az is a scalar. 

Laplacian(F)= 'I72(F)= Div( Grad(F)) is a scalar. 

Curl(F)= 'I7xF= 
[ 

. . k 1 ~, ~ %, is a vector. 

F, F2 F3 

A function is called sufficiently smooth if it has continuous 

derivatives of sufficient orders. Such a function is shown by Cn if its 

n-th derivative exists and is continuous. 

Green's Formula: If aD is the counter-clockwise oriented boundary 

of a domain D and f and g are C! functions on D, then 

f fdx + gdy = Ho (0%, - °lj,y)dxdy. 
00 

Integration by parts: 

b b 

f fdg =fgl~ - f gdf where df = / (x)dx. 
a a 
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Maple Calculations 
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1. Derivation of a cubic bubble function for 1-D nonlinear diffusion-reaction 

Problem: least squares approximation of a special function 

> d d 
ode :=K - dx dx u(x) + x - u(x) = 0; BC =u(O) = 0, u(2) = 1; 

BC:= u (0) = 0, U (2) = 1 

> dsolve( (ode, BC), u(x»; 

_ 3AiryAi(_(~rIl3)x) 
u(x) - [() (113») (( ) (1/3») 

3 AiryAi - 2 ~ - .J3 AiryBi - 2 ~ 

( (1)(1/3») j3 AiryBi - K x 

> x I-x 2 
N:= ,- u(b) + -,- -u(O) + c - x- (1- x) + f x - (l- x); 

N= u(b) + (1- x) u(O) +cx (1- x) +f~ (l- x) 
-, 1 

> d d R-=K-- -N+x-N: 
- dx dx . 
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(
J::U(b) (J-J::)u(O) 

R:=K(-2c+2j(l-x)-4j")+,, I + I +cx(/-,,) 

[[ 
1 c= - (4 

5 P - 952 f K + 89712 f K2 - 2540160 j3 K3 + 25401600;;:4 ( 

5 f U (0) - 5 f u(b) - 763 f u(O) K + 637 Ku(b) f + 13020 K2 u(b) j3 

+ 39900 j3 u(O) K2 - 529200 K3 u(b) - 529200 K3 u(O» I)J= (6 (3 f u (0) 

- 392 f u(O) K + 6160 j3 u(O) K2 + 1456Ku(b) f - 53200 K2 u(b) j3 

+ 705600 K3 u(b) - 10 f u(b») / (5 f2 - 952 f K 

> 
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2. Derivation of a cubic least squares bubble function for a I-D diffusion-

reaction Problem 

> d d 
ode := A' d x d x u (x) + u (x) = 0; BC := u (0) = 1, u ( 1) = 0; 

ode -:= A (;: u CX») + u (x) = 0 

BC:=u(O) = 1, u(1) =0 

> dsolve( (ode, BC), u(x»; 

> 

N:=(IIX) 'U(O)+(f) ·u(l)+c,x·(I-x)+f-x2. (I-x) 

N= (I-x) u(O) + xu(l) +0 (1- x) + fx2 (1- x) 
I I 

1 1 r R:= 5000 I (d- f + 3 ixl+ 5000 u(O) 1- 5000 u(O) x + 5000 x u(l) 

+ 5000 c x r - 5000 c x2 I + 5000 i x2 r - 5000 f x3 I) 
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[[ 
1 

c = - (5000 ( 
(3 + 5000 j2 + 2500000 f) (2500000 f + 21000 f2 + 63) 

65000000 f u(O) + 7500000000 f u(o) - 1250000000 f u(/) - 5000000 f u(l) 

+ 168000 u (0) f2 + 52500 u (1) f2 + 126 u (0) + 63 u (J) ) ), t = 

35000 (3 u(O) + 500 u(O) f2 - 500 u(1) f2 - 3 U(l»]] 
(2500000 f + 21000 f2 + 63) 1 
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3. Derivation of a quadratic least squares bubble function for a 2-D convection-

diffusion Problem 

> restart: 

> pde :=k' (aax u(x,y) + aay U(X,y») + (aax aax u(x,y) 

+ aay aay U(X,y») = 0; 

a2 a2 
+-2 u (x,y)+ ,.2 u (x,y)=0 ax ay 

> N=' I x h h y, u(O, 0) + I, x, *' u(O,h) + 7' h h y, u(J,O) 

+7'*'u(J,h) +C'X'Y' (i-x)' (h-y); 

N= (i-x) (h-y)u(O.O) + (i-x)yu(O.h) +x(h-y)u(l.O) 
. lh lh lh 

+ ]( y u (1, h) + C x y (1- x) Ch - y) 
Ih 

> J:= I fa i? dy dx : 
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> C :=SOIVe( OOC J, c) 

c 

+ 3 P u(O, h) h - 3 P u(/, h) h + 3 r u (0,0) h - 3 P u (1,0) h + 31 u(O, 0) ,; 

+ 3/u (1,0) h2 - 31 u(O, h) ,; - 3/u(l, h) h2 + 3 P u(/, 0) + 3 j3 u(O, 0) 

+ 3h3 u(O, 0) - 3 f3 u(l, h) - 3fu(O, h») 
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4. Derivation of a cubic least squares bubble function for a I-D general 

convection-diffusion-reaction Problem 

> restart; 

> d d d 
ode :=A' - - uex) +~. - uex) + 1;' uex) =0; 

dx dx dx 

> ,-x x 2 
N:= -,- . u(O) + "'j . u(l) + c . x . (1- x) + f x . (1- x); 

N= (i- x) u(O) + xu(l) + ex (l- x) +1x2 (I-x) 
. / / 

> d d d 
R'=A' - -N+~· -N+I;·N . dx dx dx ' 

( 
ufOI uf/) 

R := A (- 2 c + 21 (1- x) - 41 x) + ~ - ~ + =->!L + c (1- x) - c x 
/ 1 
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[[ c = (-6 P ,,4 u(O) + P ,,4 u(l) - 40 r r? u (1) A 

+ 520 A r r? u(O) - 70r.? u(l) ~2 - 140 r.? u(O) ~2 - 1320). P u(O) t.? 

-780A ~u(l) 1' .. 2 - 13440).2 P .. 2 u(O) - 4200f .. 2u(1) A2 

- 840 A P " u (I) Jl2 + 3360 l f .. u (0) Jl2 - 5040).2 ~ u (1) P " 

+ 30240 A2 Jl u(O) p" + 2520), ~3 u(1) P - 2520), Jl3 u(O) P 

+ 100800).3 1 .. u (0) + 50400 A3 I" u (1) - 25200 A2 ~2 u (0) I 

+ 25200 A2 ~2 u (1) J - 151200).3 ~ u (0) + 151200 A3 Jl u(l)) hi (302400).4 

+ 1 .. 4 + 420 I' Jl4 - 1680 tA" p" + 43201').2,,2 - 60480 r).3" - 104 fA .. 3 

+ 5040 h,2 ~2 + 52 f ,,2 Jl2)),j= - (7 (-f ,,4 u(O) 

+ 3600).2 ~u(O) 1" - 300A Jl u(O) f,,2 + 7200).2 p2 u(1) 

+ 10 t.? u (J) ~2 - 80 t .. 3 u (1) l + 1320 P ,,2 u (1) A2 - 1320 A2 P .. 2 u (0) 

+ 7200).3 "u(O) + 80Atr?r.t(0) -720013 "u(1) 

+ 3600).2 ~ u (1) I., - 300 A Jl u (1) f .. 2 

+ 600 A P "u(O) Jl2 - 600 A p" u(l) Jl2 - 10 1' .. 2 u(O) Jl2 

+ f.,4r.t(l) -7200).2 p2 u (0)))/ (l (302400).4+ 1 .. 4 
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AppendixC 

+ 420 f 114 - 1680 f).. q~2 + 4320 f),2 ,,2 - 60480?)..3" - 104 f).. ~ 

+ 5040r)..2 112 + 52 f £2 112)) ]] 

ClO 




