9 research outputs found

    Application of cepstrum analysis and linear predictive coding for motor imaginary task classification

    Get PDF
    In this paper, classification of electroencephalography (EEG) signals of motor imaginary tasks is studied using cepstrum analysis and linear predictive coding (LPC). The Brain-Computer Interface (BCI) competition III dataset IVa containing motor imaginary tasks for right hand and foot of five subjects are used. The data was preprocessed by applying whitening and then filtering the signal followed by feature extraction. A random forest classifier is then trained using the cepstrum and LPC features to classify the motor imaginary tasks. The resulting classification accuracy is found to be over 90%. This research shows that concatenating appropriate different types of features such as cepstrum and LPC features hold some promise for the classification of motor imaginary tasks, which can be helpful in the BCI context

    The Application of the Imagery Training Model in Improving the Learning Outcomes of Round Off Students of Physical Education Program

    Get PDF
    This study aims to determine the effect of the imagery training model on the process and learning outcomes of the Roundoff Floor Gymnastics. This study used the classroom action research method (Action Research) with a research design including 1) planning 2) action 3) observation and evaluation, and 4) reflection. The subjects of this study were 30 first semester students. The results of the study show that 1) the imagery training model leads to a better and more conducive learning process which was marked by an increase in Academic Learning-time Physical Education (Alt-PE), whose indicators were students actively moving, practicing and being active during the gymnastic learning process, with the effective time increasing from 25.26% to 71.11% for 90 minutes of learning. 2)Imagery training models have a positive influence on learning outcomes, namely improving roundoff skills with a success rate of more than 80% reaching the good and very good categories, the indicators of which are the starting movement, the core Roundoff movement, landing and 1800 body turns can be done well

    Motor Imagery EEG Recognition using Deep Generative Adversarial Network with EMD for BCI Applications

    Get PDF
    The activities for motor imagery (MI) movements in Electroencephalography (EEG) are still interesting and challenging. BCI (Brain Computer Interface) allows the brain signals to control the external devices and also helps a disabled person suffering from neuromuscular disorders. In any BCI system, the two most essential steps are feature extraction and classification method. However, in this paper, the MI classification is improved by the performance of Deep Learning (DL) concept. In this proposed system two-moment imagination of right hand and right foot from the BCI competition three datasets IVA has been taken and classification methods utilizing Conventional neural network (CNN) and Generative Adversarial Network (GAN) are developed. The training time is reduced and non-stationary problem is managed by applying Empirical mode decomposition (EMD) and mixing their intrinsic mode functions (IMFs) in feature extraction technique. The experimental result indicates the proposed GAN classification technique achieves better classification accuracy in terms of 95.29% than the CNN of 89.38%. The proposed GAN method achieves an average positive rate of 62% and average false positive rate of 3.4% on BCI competition three datasets IVA whose EEG facts were resulting from the similar C3, C4, and Cz channels of the motor cortex

    Towards a POMDP-based Control in Hybrid Brain-Computer Interfaces

    Get PDF
    Brain-Computer Interfaces (BCI) provide a unique communication channel between the brain and computer systems. After extensive research and implementation on ample fields of application, numerous challenges to assure reliable and quick data processing have resulted in the hybrid BCI (hBCI) paradigm, consisting on the combination of two BCI systems. However, not all challenges have been properly addressed (e.g. re-calibration, idle-state modelling, adaptive thresholds, etc) to allow hBCI implementation outside of the lab. In this paper, we review electroencephalography based hBCI studies and state potential limitations. We propose a sequential decision-making framework based on Partially Observable Markov Decision Process (POMDP) to design and to control hBCI systems. The POMDP framework is an excellent candidate to deal with the limitations raised above. To illustrate our opinion, an example of architecture using a POMDP-based hBCI control system is provided, and future directions are discussed. We believe this framework will encourage research efforts to provide relevant means to combine information from BCI systems and push BCI out of the laboratory

    Hybrid Brain-Computer Interface Systems: Approaches, Features, and Trends

    Get PDF
    Brain-computer interface (BCI) is an emerging field, and an increasing number of BCI research projects are being carried globally to interface computer with human using EEG for useful operations in both healthy and locked persons. Although several methods have been used to enhance the BCI performance in terms of signal processing, noise reduction, accuracy, information transfer rate, and user acceptability, the effective BCI system is still in the verge of development. So far, various modifications on single BCI systems as well as hybrid are done and the hybrid BCIs have shown increased but insufficient performance. Therefore, more efficient hybrid BCI models are still under the investigation by different research groups. In this review chapter, single BCI systems are briefly discussed and more detail discussions on hybrid BCIs, their modifications, operations, and performances with comparisons in terms of signal processing approaches, applications, limitations, and future scopes are presented

    Optimized Motor Imagery Paradigm Based on Imagining Chinese Characters Writing Movement

    Full text link

    Uso de características espectrales y temporales para clasificación de tareas mentales en señales de electroencefalografía

    Get PDF
    Tesis (Magíster en Neurorehabilitación)Este estudio busca validar un método de clasificación de tareas mentales a partir de la extracción de características de una señal de electroencefalografía, lo que permitiría su implementación en interfaz cerebro-computador (ICC). Para esto se utilizará una base de datos propia obtenida a partir de los registros de un grupo de personas sanas, las cuales desarrollan tareas mentales contrapuestas. A cada señal se le extraerán un set de características, las que serán usadas para entrenar y validar un grupo de clasificadores, con el objetivo de reconocer una tarea de imaginería motora determinada. El objetivo de este proyecto es desarrollar un método que permita identificar las tareas mentales a partir de trabajos de imaginería motora, obtenidos a partir del registro de electroencefalografía (EEG). En este estudio, se buscó determinar si el uso de las características seleccionadas de la señal de electroencefalograma permite una correcta clasificación con indicadores de especificidad, sensibilidad, valor predictivo positivo, valor predictivo negativo y precisión; y además se usaron tres clasificadores de distintos tipos para validar este procedimiento y para determinar cuál de ellos tenía un mejor desempeño frente a estas características específicas. Las características seleccionadas en el dominio del tiempo fueron: Desviación estándar, varianza, media, moda, mediana, kurtosis, Skewness. En el dominio de la frecuencia se utilizaron la frecuencia máxima, frecuencia mediana, frecuencia media y fase. Los clasificadores utilizados para este estudio fueron del tipo Naive Bayes, SMO y Dagging. El método desarrollado mostró, dependiendo del clasificador, valores promedio altos de especificidad, sensibilidad y precisión. Para el clasificador Naive Bayes se obtuvieron valores promedio de Sensibilidad de 0,6; Especificidad 0,7 y Precisión 0,6. Para el clasificador SMO la Sensibilidad es de 0,8; la Especificidad de 0,8 y la Precisión de 0,7. Para el Clasificador Dagging el valor promedio de Sensibilidad fue de 0,7; el de Especificidad de 0,8 y el de Precisión de 0,7. Además al graficar la curva ROC se obtiene como resultado que el mejor clasificador para este tipo de características es el de tipo SMO. En conclusión, el método desarrollado en este estudio fue capaz de diferenciar dos tareas mentales, por lo que podría ser usado en interfaz cerebro-computador. Además, los valores de sensibilidad, especificidad, valores predictivos positivos y negativos y la presición son valores óptimos en comparación al estado del arte, que presentan valores de presición cercanos al 70% en las distintas modalidades más utilizadas (Mohd Zaizu Ilyas, 2015). Y finalmente se pudo comprobar que el clasificador que mejor desempeño tiene frente a estas caracteristicas seleccionadas es el de tipo SMO

    Sistemas embebidos de tiempo real con aplicaciones en bioingeniería

    Get PDF
    El avance de la tecnología permite abordar problemas cada vez más complejos con implementaciones cada vez más compactas. Un claro ejemplo de esto son los sistemas embebidos (SE): dispositivos electrónicos compactos y autónomos, con capacidad de cómputo, que realizan procesamiento de datos y/o control sobre variables físicas externas. La mayor diferencia que presenta un SE, respecto de un computador personal (PC), es que un SE está dedicado a una función particular para la cual fue desarrollado, mientras que un PC está concebido para usos múltiples. Además, los recursos de hardware que dispone un SE son generalmente más reducidos y deben afrontar importantes restricciones de consumo. Ejemplos actuales de equipos que contienen sistemas embebidos son: un router, un teléfono celular, un lavarropas, un equipo reproductor de audio o la unidad central de control de un automóvil, entre muchos otros. También son múltiples y diversas las aplicaciones biomédicas que requieren SE como dosificadores de drogas, monitores de parámetros fisiológicos, interfaces cerebro-computadora y equipos de diagnóstico autónomos. Una característica distintiva de estas aplicaciones es que deben cumplir con estrictas restricciones en los tiempos de respuesta y de ejecución para las tareas que deben realizar, por lo cual exigen sistemas embebidos de tiempo real. En general, las aplicaciones biomédicas requieren la captura de señales, su procesamiento y además de generar estímulos en forma sincronizada con la adquisición de las señales. Estas demandas imponen serias restricciones, tanto en el software como en el hardware de este tipo de equipos. Esta tesis propone una metodología de diseño de SE para aplicaciones biomédicas. A partir de ejemplos concretos se describe el fraccionamiento de las tareas; en primer lugar entre el procesamiento analógico y el procesamiento digital de señales, y luego entre distintas plataformas sobre las cuales se implementan las tareas de procesamiento digital. Los dispositivos desarrollados en el marco de esta tesis son: un adquisidor de señales de EEG autónomo con transmisión inalámbrica para Interfaces Cerebro-Computadora (ICC) basada en ritmos cerebrales, un equipo para diagnóstico de hipoacusias basado en Oto-emisiones Acústicas (OAE) diseñado para una empresa de audiología que actualmente lo comercializa y una plataforma para implementación de ICC basada en potenciales evocados visuales de estado estacionario (del inglés SSVEP: Steady State Visual Evoked Potential) Los dispositivos desarrollados, que tienen distintos grados de complejidad y requerimientos particulares, abarcan desde pequeños SE basados en microcontroladores de 8 bits, a plataformas con microprocesadores de 32 bits con sistemas operativos de tiempo real. Cada uno de estos equipos resultaron como soluciones propias y apropiadas a problemas específicos de bioingeniería e incorporan aportes originales en distintos aspectos de los SE.Facultad de Ingenierí

    Wearable brain computer interfaces with near infrared spectroscopy

    Full text link
    Brain computer interfaces (BCIs) are devices capable of relaying information directly from the brain to a digital device. BCIs have been proposed for a diverse range of clinical and commercial applications; for example, to allow paralyzed subjects to communicate, or to improve machine human interactions. At their core, BCIs need to predict the current state of the brain from variables measuring functional physiology. Functional near infrared spectroscopy (fNIRS) is a non-invasive optical technology able to measure hemodynamic changes in the brain. Along with electroencephalography (EEG), fNIRS is the only technique that allows non-invasive and portable sensing of brain signals. Portability and wearability are very desirable characteristics for BCIs, as they allow them to be used in contexts beyond the laboratory, extending their usability for clinical and commercial applications, as well as for ecologically valid research. Unfortunately, due to limited access to the brain, non-invasive BCIs tend to suffer from low accuracy in their estimation of the brain state. It has been suggested that feedback could increase BCI accuracy as the brain normally relies on sensory feedback to adjust its strategies. Despite this, presenting relevant and accurate feedback in a timely manner can be challenging when processing fNIRS signals, as they tend to be contaminated by physiological and motion artifacts. In this dissertation, I present the hardware and software solutions we proposed and developed to deal with these challenges. First, I will talk about ninjaNIRS, the wearable open source fNIRS device we developed in our laboratory, which could help fNIRS neuroscience and BCIs to become more accessible. Next, I will present an adaptive filter strategy to recover the neural responses from fNIRS signals in real-time, which could be used for feedback and classification in a BCI paradigm. We showed that our wearable fNIRS device can operate autonomously for up to three hours and can be easily carried in a backpack, while offering noise equivalent power comparable to commercial devices. Our adaptive multimodal Kalman filter strategy provided a six-fold increase in contrast to noise ratio of the brain signals compared to standard filtering while being able to process at least 24 channels at 400 samples per second using a standard computer. This filtering strategy, along with visual feedback during a left vs right motion imagery task, showed a relative increase of accuracy of 37.5% compared to not using feedback. With this, we show that it is possible to present relevant feedback for fNIRS BCI in real-time. The findings on this dissertation might help improve the design of future fNIRS BCIs, and thus increase the usability and reliability of this technology
    corecore