113 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    ๋น„๋ฉดํ—ˆ๋Œ€์—ญ ์…€๋ฃฐ๋ผ ํ†ต์‹ ์˜ ์„ฑ๋Šฅ ๋ถ„์„ ๋ฐ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ๋ฐ•์„ธ์›….3GPP๋Š” LAA (licensed-assisted access)๋ผ๊ณ ํ•˜๋Š” 5GHz ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ LTE๋ฅผ ๊ฐœ๋ฐœํ–ˆ์Šต๋‹ˆ๋‹ค. LAA๋Š” ์ถฉ๋Œ ๋ฐฉ์ง€ ๊ธฐ๋Šฅ์„ ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด Wi-Fi์˜ CSMA / CA (Carrier Sense Multiple Access with Collision avoidance)์™€ ์œ ์‚ฌํ•œ LBT (Listen Before Talk) ์ž‘์—…์„ ์ฑ„ํƒํ•˜์—ฌ ๊ฐ LAA ๋‹ค์šด ๋งํฌ ๋ฒ„์ŠคํŠธ์˜ ํ”„๋ ˆ์ž„ ๊ตฌ์กฐ ์˜ค๋ฒ„ ํ—ค๋“œ๋Š” ๊ฐ๊ฐ์˜ ์ข…๋ฃŒ ์‹œ๊ฐ„์— ๋”ฐ๋ผ ๋‹ฌ๋ผ์ง‘๋‹ˆ๋‹ค. ์ด์ „ LBT ์ž‘์—…. ์ด ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ˆ˜์น˜ ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๋‹ค์Œ์œผ๋กœ, ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ ๋‹ค์Œ ๋‘ ๊ฐ€์ง€ ํ–ฅ์ƒ๋œ ๊ธฐ๋Šฅ์„ ๊ณ ๋ คํ•ฉ๋‹ˆ๋‹ค. ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ . ๊ธฐ์กด WiFi ๋ถ„์„ ๋ชจ๋ธ๋กœ๋Š” LAA์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ์ ์„ ๊ฐ์•ˆํ•˜์—ฌ ๋ณธ ์„œ์‹ ์—์„œ๋Š” ์—ฌ๋Ÿฌ ๊ฒฝํ•ฉ ์ง„ํ™” ๋œ NodeB๋กœ ๊ตฌ์„ฑ๋œ LAA ๋„คํŠธ์›Œํฌ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด Markov ์ฒด์ธ ๊ธฐ๋ฐ˜ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. LAA ํ”„๋ ˆ์ž„ ๊ตฌ์กฐ ์˜ค๋ฒ„ ํ—ค๋“œ์˜ ๋ณ€ํ˜•. LTE-LAA๋Š” LTE์—์„œ ์ƒ์† ๋œ ์†๋„ ์ ์‘ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์œ„ํ•ด ์ ์‘ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ (AMC) ์„ ์ฑ„ํƒํ•ฉ๋‹ˆ๋‹ค. AMC๋Š” ์ง„ํ™” ๋œ nodeB (eNB)๊ฐ€ ํ˜„์žฌ ์ „์†ก์˜ ์ฑ„๋„ ํ’ˆ์งˆ ํ‘œ์‹œ๊ธฐ ํ”ผ๋“œ ๋ฐฑ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋‹ค์Œ ์ „์†ก์„์œ„ํ•œ ๋ณ€์กฐ ๋ฐ ์ฝ”๋”ฉ ๋ฐฉ์‹ (MCS)์„ ์„ ํƒํ•˜๋„๋ก ๋•์Šต๋‹ˆ๋‹ค. ๋ผ์ด์„ ์Šค ๋Œ€์—ญ์—์„œ ๋™์ž‘ํ•˜๋Š” ๊ธฐ์กด LTE์˜ ๊ฒฝ์šฐ ๋…ธ๋“œ ๊ฒฝํ•ฉ ๋ฌธ์ œ๊ฐ€ ์—†์œผ๋ฉฐ AMC ์„ฑ๋Šฅ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ์ž˜ ์ง„ํ–‰๋˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ ๋™์ž‘ํ•˜๋Š” LTE-LAA ์˜ ๊ฒฝ์šฐ ์ถฉ๋Œ ๋ฌธ์ œ๋กœ ์ธํ•ด AMC ์„ฑ๋Šฅ์ด ์ œ๋Œ€๋กœ ์ฒ˜๋ฆฌ๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. ์ด ํŽธ์ง€์—์„œ๋Š” AMC ์šด์˜์„ ๊ณ ๋ คํ•œ ํ˜„์‹ค์ ์ธ ์ฑ„๋„ ๋ชจ๋ธ์—์„œ LTELAA ์„ฑ๋Šฅ์„ ๋ถ„์„ํ•˜๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ ์šด Markov ์ฒด์ธ ๊ธฐ๋ฐ˜ ๋ถ„์„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋ฌด์„  ๋„คํŠธ์›Œํฌ ๋ถ„์„์— ๋„๋ฆฌ ์‚ฌ์šฉ๋˜๋Š” Rayleigh ํŽ˜์ด๋”ฉ ์ฑ„๋„ ๋ชจ๋ธ์„ ์ฑ„ํƒํ•˜๊ณ  ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ns-3 ์‹œ๋ฎฌ๋ ˆ์ดํ„ฐ์—์„œ ์–ป์€ ๊ฒฐ๊ณผ ์™€ ๋น„๊ตํ•ฉ๋‹ˆ๋‹ค. ๋น„๊ต ๊ฒฐ๊ณผ๋Š” ํ‰๊ท  ์ •ํ™•๋„๊ฐ€ 99.5%๋กœ ๋ถ„์„ ๋ชจ๋ธ์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ๋†’์€ ๋ฐ์ดํ„ฐ ์†๋„์— ๋Œ€ํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์œผ๋กœ ์ธํ•ด 3GPP๋Š” LTE-LAA๋ฅผ์œ„ํ•œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์šด์˜์„ ์ œ๊ณตํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ๋™์ž‘์€ OOBE์— ์ทจ์•ฝํ•˜๊ณ  ์ œํ•œ๋œ ์ „์†ก ์ „๋ ฅ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋น„ํšจ์œจ์  ์ธ ์ฑ„๋„ ์‚ฌ์šฉ์„ ์ดˆ๋ž˜ํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์ฑ„๋„ ํšจ์œจ์„ ๋†’์ด๊ธฐ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ๋ฐฉ์‹์€ ์ „์†ก ๋ฒ„์ŠคํŠธ๋ฅผ ์—ฌ๋Ÿฌ ๊ฐœ๋กœ ๋ถ„ํ• ํ•˜๊ณ  ์ „์†ก ์ „๋ ฅ ์ œํ•œ์„ ์ถฉ์กฑํ•˜๋ฉด์„œ ์งง์€ ์„œ๋ธŒ ํ”„๋ ˆ์ž„ ์ „์†ก ์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ฑ„๋„ ์ƒํƒœ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ํŒ๋‹จํ•˜์—ฌ OOBE ๋ฌธ์ œ๋ฅผ ๊ทน๋ณต ํ•  ์ˆ˜์žˆ๋Š” ์—๋„ˆ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์†Œํ”„ํŠธ์›จ์–ด ์ •์˜ ๋ผ๋””์˜ค๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋กœํ†  ํƒ€์ž…์€ 99% ์ด์ƒ์˜ ์ •ํ™•๋„๋กœ ์ฑ„๋„ ์ƒํƒœ๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ์—๋„ˆ์ง€ ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์‹คํ–‰ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆ ๋œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ์•ก์„ธ์Šค ๋ฐฉ์‹์ด ๊ธฐ์กด LBT ์œ ํ˜• A ๋ฐ ์œ ํ˜• B์— ๋น„ํ•ด ์‚ฌ์šฉ์ž์ธ์ง€ ์ฒ˜๋ฆฌ๋Ÿ‰์—์„œ ๊ฐ๊ฐ ์ตœ๋Œ€ 59% ๋ฐ 21.5%์˜ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑ ํ•จ์„ ํ™•์ธํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ ˆ๊ฑฐ์‹œ LAA์—๋Š” ๋ฐฐํฌ ๋ฌธ์ œ๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— 3GPP์™€ MulteFire ์–ผ๋ผ์ด์–ธ์Šค๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹  ์‹œ์Šค ํ…œ์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ข…๋ž˜์˜ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ๋…๋ฆฝํ˜• ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹  ์‹œ์Šคํ…œ์€ ์ƒํ–ฅ ๋งํฌ ์ œ์–ด ๋ฉ”์‹œ์ง€์˜ ์ „์†ก ํ™•๋ฅ ์ด ๋‚ฎ๋‹ค. ์ด ๋…ผ๋ฌธ์€ Wi-Fi ๋ธ”๋ก ACK ํ”„๋ ˆ์ž„์— ์—… ๋งํฌ ์ œ์–ด ๋ฉ”์‹œ์ง€๋ฅผ ๋„ฃ๋Š” W ARQ : Wi-Fi ์ง€์› HARQ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ W-ARQ์˜ ์ฒ˜ ๋ฆฌ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋ณ‘๋ ฌ HARQ ๋ฐ ํด๋Ÿฌ์Šคํ„ฐ๋ง ๋œ Minstrel์„ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๊ฐ€ ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ธฐ์กด MulteFire๊ฐ€ ๊ฑฐ์˜ ์ œ๋กœ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ์„ ๋ณด์ด๋Š” ๊ฒฝ์šฐ ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ์š”์•ฝํ•˜๋ฉด ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ ์„ฑ๋Šฅ์„ ๋ถ„์„ ํ•ฉ๋‹ˆ๋‹ค. ์ œ์•ˆ ๋œ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์šฐ๋ฆฌ๋Š” ๋ ˆ๊ฑฐ์‹œ ๋‹ค์ค‘ ๋ฐ˜์†กํŒŒ ๋™์ž‘์„ ์ฃผ์žฅํ•˜๋ฉฐ ๋น„๋ฉดํ—ˆ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์˜ HARQ๋Š” ํšจ์œจ์ ์ด์ง€ ์•Š๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ, ์šฐ๋ฆฌ๋Š” ์ตœ์ฒจ๋‹จ ๊ธฐ ์ˆ ์— ๋น„ํ•ด UPT ๋ฐ ์ฒ˜๋ฆฌ๋Ÿ‰๊ณผ ๊ฐ™์€ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ•˜๋Š” OOBE ์ธ์‹ ์ถ”๊ฐ€ ์•ก์„ธ์Šค ๋ฐ W-ARQ๋ฅผ ์ œ์•ˆํ•ฉ๋‹ˆ๋‹ค.3GPP has developed 5 GHz unlicensed band LTE, referred to as licensed-assisted access (LAA). LAA adopts listen before talk (LBT) operation, resembling Wi-Fis carrier sense multiple access with collision avoidance (CSMA/CA), to enable collision avoidance capability, while the frame structure overhead of each LAA downlink burst varies with the ending time of each preceding LBT operation. In this dissertation, we propose numerical model to analyze unlicensed band cellular communication. Next, we consider the following two enhancements of unlicensed band cellular communication: (i) out-of-band emission (OOBE) aware additional carrier access, and (ii) Wi-Fi assisted hybrid automatic repeat request (H-ARQ) for unlicensed-band stand-alone cellular communication. Given that, existing analytic models of Wi-Fi cannot be used to evaluate the performance of LAA, in this letter, we propose a novel Markov chain-based analytic model to analyze the performance of LAA network composed of multiple contending evolved NodeBs by considering the variation of the LAA frame structure overhead. LTE-LAA adopts adaptive modulation and coding (AMC) for the rate adaptation algorithm inherited from LTE. AMC helps the evolved nodeB (eNB) to select a modulation and coding scheme (MCS) for the next transmission using the channel quality indicator feedback of the current transmission. For the conventional LTE operating in the licensed band, there is no node contention problem and AMC performance has been well studied. However, in the case of LTE-LAA operating in the unlicensed band, AMC performance has not been properly addressed due to the collision problem. In this letter, we propose a novel Markov chain-based analysis model for analyzing LTELAA performance under a realistic channel model considering AMC operation. We adopt Rayleigh fading channel model widely used in wireless network analysis, and compare our analysis results with the results obtained from ns-3 simulator. Comparison results show an average accuracy of 99.5%, which demonstrates the accuracy of our analysis model. Due to the requirement for a high data rate, the 3GPP has provided multi-carrier operation for LTE-LAA. However, multi-carrier operation is susceptible to OOBE and uses limited transmission power, resulting in inefficient channel usage. This paper proposes a novel multi-carrier access scheme to enhance channel efficiency. Our proposed scheme divides a transmission burst into multiple ones and uses short subframe transmission while meeting the transmission power limitation. In addition, we propose an energy detection algorithm to overcome the OOBE problem by deciding the channel status accurately. Our prototype using software-defined radio shows the feasibility and performance of the energy detection algorithm that determines the channel status with over 99% accuracy. Through ns-3 simulation, we confirm that the proposed multi-carrier access scheme achieves up to 59% and 21.5% performance gain in userperceived throughput compared with the conventional LBT type A and type B, respectively. Since the legacy LAA has deployment problem, 3GPP and MulteFire alliance proposed unlicensed band stand-alone cellular communication system. However, conventional unlicensed band stand-alone cellular communication system has low transmission probability of uplink control messages. This disertation proposes W-ARQ: Wi-Fi assisted HARQ which put uplink control messages into Wi-Fi block ACK frame. In addition we propose parallel HARQ and clustered Minstrel to enhance throughput performance of W-ARQ. Our proposed algorithm shows high throughput performance where conventional MulteFire shows almost zero throughput performance. In summary, we analyze the performance of unlicensed-band cellular communication. By using the proposed model, we insist the legacy multi-carrier operation and HARQ of unlicensed cellular communication is not efficient. By this reason, we propose OOBE aware additional access and W-ARQ which achievee enhancements of network performance such as UPT and throughput compared with state-of-the-art techniques.Abstract i Contents iv List of Tables vii List of Figures viii 1 Introduction 1 1.1 Unlicensed Band Communication System . . . . . . . . . . . . . . . 1 1.2 Overview of Existing Approaches . . . . . . . . . . . . . . . . . . . 2 1.2.1 License-assisted access . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Further LAA . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.3 Non-3GPP Unlicensed Band Cellular Communication . . . . 6 1.3 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Performance Analysis of LTE-LAA . . . . . . . . . . . . . . 6 1.3.2 Out-of-Band Emission Aware Additional Carrier Access for LTE-LAA Network . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.3 W-ARQ: Wi-Fi Assisted HARQ for Unlicensed Band StandAlone Cellular Communication System . . . . . . . . . . . . 8 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 8 2 Performance Analysis of LTE-LAA network 10 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Proposed Markov-Chain Model . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Markov Property . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Markov Chain Model for EPS Type Variation . . . . . . . . . 16 2.3.3 LAA Network Throughput Estimation . . . . . . . . . . . . . 18 2.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3 Out-of-Band Emission Aware Additional Carrier Access for LTE-LAA Network 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Related work and Background . . . . . . . . . . . . . . . . . . . . . 37 3.2.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Listen Before Talk . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.3 Out-of-Band Emission . . . . . . . . . . . . . . . . . . . . . 39 3.3 Multi-carrier Operation of LTE-LAA . . . . . . . . . . . . . . . . . . 39 3.4 Carrier Sensing considering Out-of-Band Emission . . . . . . . . . . 47 3.4.1 Energy Detection Algorithm . . . . . . . . . . . . . . . . . . 49 3.4.2 Nominal Band Energy Detection . . . . . . . . . . . . . . . . 50 3.4.3 OOBE-Free Region Energy Detection . . . . . . . . . . . . . 51 3.5 Additional Carrier Access Scheme . . . . . . . . . . . . . . . . . . . 52 3.5.1 Basic Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.5.2 Transmission Power Limitation . . . . . . . . . . . . . . . . 53 3.5.3 Dividing Transmission Burst . . . . . . . . . . . . . . . . . . 54 3.5.4 Short Subframe Decision . . . . . . . . . . . . . . . . . . . . 54 3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6.1 Performance of Energy Detection considering OOBE . . . . . 57 3.6.2 Simulation Environments . . . . . . . . . . . . . . . . . . . . 57 3.6.3 Performance of Proposed Carrier Access Scheme . . . . . . . 58 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 W-ARQ: Wi-Fi Assisted HARQ for Unlicensed Band Stand-Alone Cellular Communication System 66 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4 W-ARQ: Wi-Fi assisted HARQ for Unlicensed Band Stand-Alone Cellular Communication System . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Parallel HARQ . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4.2 Clustered Minstrel . . . . . . . . . . . . . . . . . . . . . . . 72 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Concluding Remarks 80 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Abstract (In Korean) 90 ๊ฐ์‚ฌ์˜ ๊ธ€ 93Docto

    Cooperation techniques between LTE in unlicensed spectrum and Wi-Fi towards fair spectral efficiency

    Get PDF
    On the road towards 5G, a proliferation of Heterogeneous Networks (HetNets) is expected. Sensor networks are of great importance in this new wireless era, as they allow interaction with the environment. Additionally, the establishment of the Internet of Things (IoT) has incredibly increased the number of interconnected devices and consequently the already massive wirelessly transmitted traffic. The exponential growth of wireless traffic is pushing the wireless community to investigate solutions that maximally exploit the available spectrum. Recently, 3rd Generation Partnership Project (3GPP) announced standards that permit the operation of Long Term Evolution (LTE) in the unlicensed spectrum in addition to the exclusive use of the licensed spectrum owned by a mobile operator. Alternatively, leading wireless technology developers examine standalone LTE operation in the unlicensed spectrum without any involvement of a mobile operator. In this article, we present a classification of different techniques that can be applied on co-located LTE and Wi-Fi networks. Up to today, Wi-Fi is the most widely-used wireless technology in the unlicensed spectrum. A review of the current state of the art further reveals the lack of cooperation schemes among co-located networks that can lead to more optimal usage of the available spectrum. This article fills this gap in the literature by conceptually describing different classes of cooperation between LTE and Wi-Fi. For each class, we provide a detailed presentation of possible cooperation techniques that can provide spectral efficiency in a fair manner

    LTE-LAA ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ์œ„ํ•œ MAC ๊ณ„์ธต ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ตœ์„ฑํ˜„.3GPP long term evolution (LTE) operation in unlicensed spectrum is emerging as a promising technology in achieving higher data rate with LTE since ultra-wide unlicensed spectrum, e.g., about 500 MHz at 5โ€“6 GHz range, is available in most countries. Recently, 3GPP has finalized standardization of licensed-assisted access (LAA) for LTE operation in 5 GHz unlicensed spectrum, which has been a playground only for Wi-Fi. In this dissertation, we propose the following three strategies to enhance the performance of LAA: (1) Receiver-aware COT adaptation, (2) Collision-aware link adaptation, and (3) Power and energy detection threshold adaptation. First, LAA has a fixed maximum channel occupancy time (MCOT), which is the maximum continuous transmission time after channel sensing, while Wi-Fi may transmit for much shorter time duration. As a result, when Wi-Fi coexists with LAA, Wi-Fi airtime and throughput can be much less than those achieved when Wi-Fi coexists with another Wi-Fi. To guarantee fair airtime and improve throughput of Wi-Fi, we propose a receiver-aware channel occupancy time (COT) adaptation ( RACOTA ) algorithm, which observes Wi-Fi aggregate MAC protocol data unit (A-MPDU) frames and matches LAAs COT to the duration of A-MPDU frames when any Wi-Fi receiver has more data to receive. Moreover, RACOTA detects saturation of Wi-Fi traffic and adjusts COT only if Wi-Fi traffic is saturated. We prototype saturation detection algorithm of RACOTA with commercial off-the-shelf Wi-Fi device and show that RACOTA detects saturation of Wi-Fi networks accurately. Through ns-3 simulations, we demonstrate that RACOTA provides airtime fairness between LAA and Wi-Fi while achieves up to 334% Wi-Fi throughput gain. Second, the link adaptation scheme of the conventional LTE, adaptive modulation and coding (AMC), cannot operate well in the unlicensed band due to intermittent collisions. Intermittent collisions make LAA eNB lower modulation and coding scheme (MCS) for the subsequent transmission and such unnecessarily lowered MCS significantly degrades spectral efficiency. To address this problem, we propose a collision-aware link adaptation algorithm ( COALA ). COALA exploits k-means unsupervised clustering algorithm to discriminate channel quality indicator (CQI) reports which are measured with collision interference and selects the most suitable MCS for the next transmission. By prototype-based experiments, we demonstrate that COALA detects collisions accurately, and by conducting ns-3 simulations in various scenarios, we also show that COALA achieves up to 74.9% higher user perceived throughput than AMC. Finally, we propose PETAL to mitigate the negative impact of spatial reuse (SR) operation. We first design the baseline algorithm, which operates SR aggressively, and show that the baseline algorithm degrades the throughput performance severely when the UE is close to an interferer. Our proposed algorithm PETAL estimates and compares the spectral efficiency for the SR operation and non-SR operation. Then, PETAL operates SR only if the spectral efficiency of SR operation is expected to be higher than the case of non-SR operation. Our simulation verifies the performance of PETAL in various scenarios. When two pair of an eNB and a UE coexists, PETAL improves the throughput by up to 329% over the baseline algorithm. In summary, we identify interesting problems that appeared with LAA and shows the impact of the problems through the extensive simulations and propose compelling algorithms to solve the problems. The airtime fairness between Wi-Fi and LAA is improved with COT adaptation. Furthermore, link adaptation accuracy and SR operation are improved by exploiting CQI reports history. The performance of the proposed schemes is verified by system level simulation.๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ์˜ LTE ๋™์ž‘์€ ๋” ๋†’์€ ๋ฐ์ดํ„ฐ ์ „์†ก๋ฅ ์„ ๋‹ฌ์„ฑํ•˜๋Š” ์œ ๋งํ•œ ๊ธฐ์ˆ ๋กœ ๋ถ€๊ฐ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ 3GPP๋Š” ๊ธฐ์กด Wi-Fi ๊ธฐ์ˆ ์ด ์‚ฌ์šฉํ•˜๋˜ 5 GHz ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ LTE๋ฅผ ์‚ฌ์šฉํ•˜๋Š” licensed-assisted access (LAA) ๊ธฐ์ˆ ์˜ ํ‘œ์ค€ํ™”๋ฅผ ์™„๋ฃŒํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” LAA์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์„ธ ๊ฐ€์ง€ ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค: (1) ์ˆ˜์‹ ๊ธฐ ์ธ์‹ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ์ ์‘, (2) ์ถฉ๋Œ ์ธ์‹ ๋งํฌ ์ ์‘, (3) ์ „๋ ฅ ๋ฐ ์—๋„ˆ์ง€ ๊ฒ€์ถœ ์—ญ์น˜ ์ ์‘. ์ฒซ์งธ, LAA๋Š” ๊ณ ์ •๋œ ์ตœ๋Œ€ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ  ๊ทธ ์‹œ๊ฐ„ ๋งŒํผ ์—ฐ์†์ ์œผ๋กœ ์ „์†กํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐ˜๋ฉด, Wi-Fi๋Š” ๋น„๊ต์  ์งง์€ ์‹œ๊ฐ„ ๋™์•ˆ๋งŒ ์—ฐ์†์ ์œผ๋กœ ์ „์†กํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ Wi-Fi๊ฐ€ LAA์™€ ๊ณต์กดํ•  ๋•Œ Wi-Fi์˜ airtime๊ณผ ์ˆ˜์œจ ์„ฑ๋Šฅ์€ Wi-Fi๊ฐ€ ๋˜ ๋‹ค๋ฅธ Wi-Fi์™€ ๊ณต์กดํ•  ๋•Œ์— ๋น„ํ•˜์—ฌ ์ €ํ•˜๋˜๊ฒŒ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” Wi-Fi์˜ airtime๊ณผ ์ˆ˜์œจ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ Wi-Fi์˜ A-MPDU ํ”„๋ ˆ์ž„ ์ „์†ก ์‹œ๊ฐ„์— ๋งž์ถ”์–ด LAA์˜ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ์กฐ์ ˆํ•˜๋Š” ์ˆ˜์‹ ๊ธฐ ์ธ์‹ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„ ์ ์‘ ๊ธฐ๋ฒ•์ธ RACOTA๋ฅผ ์ œ์•ˆํ•œ๋‹ค. RACOTA ๋Š” ํฌํ™” ๊ฐ์ง€ ๊ฒฐ๊ณผ Wi-Fi ์ˆ˜์‹ ๊ธฐ๊ฐ€ ๋” ๋ฐ›์„ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋‹ค๊ณ  ํŒ๋‹จ๋  ๋•Œ์—๋งŒ ์ฑ„๋„ ์ ์œ  ์‹œ๊ฐ„์„ ์กฐ์ ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” RACOTA ์˜ ํฌํ™” ๊ฐ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ƒ์šฉ Wi-Fi ์žฅ๋น„์— ๊ตฌํ˜„ํ•˜์—ฌ ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์‹ค์ธก์„ ํ†ตํ•ด RACOTA ๊ฐ€ ๊ณต์กดํ•˜๋Š” Wi-Fi์˜ ํฌํ™” ์—ฌ๋ถ€๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€ํ•ด๋ƒ„์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ RACOTA ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” LAA๊ฐ€ ๊ณต์กดํ•˜๋Š” Wi-Fi์—๊ฒŒ ๊ณต์ •ํ•œ airtime์„ ์ œ๊ณตํ•˜๊ณ  ๊ธฐ์กด LAA์™€ ๊ณต์กดํ•˜๋Š” Wi-Fi ๋Œ€๋น„ ์ตœ๋Œ€ 334%์˜ Wi-Fi ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ๋‘˜์งธ, ๊ฐ„ํ—์ ์ธ ์ถฉ๋Œ์ด ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ๋Š” ๊ธฐ์กด LTE์˜ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•์ธ adaptive modulation and coding (AMC)์ด ์ž˜ ๋™์ž‘ํ•˜์ง€ ์•Š์„ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ„ํ—์ ์ธ ์ถฉ๋Œ์€ LAA ๊ธฐ์ง€๊ตญ์œผ๋กœ ํ•˜์—ฌ๊ธˆ modulation and coding scheme (MCS)์„ ๋‚ฎ์ถ”์–ด์„œ ๋‹ค์Œ ์ „์†ก์„ ํ•˜๋„๋ก ํ•˜๋Š”๋ฐ ๋‹ค์Œ ์ „์†ก ์‹œ์— ์ถฉ๋Œ์ด ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š”๋‹ค๋ฉด ๋ถˆํ•„์š”ํ•˜๊ฒŒ ๋‚ฎ์ถ˜ MCS๋กœ ์ธํ•ด ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์ด ํฌ๊ฒŒ ์ €ํ•˜๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ์œ„ํ•ด ์šฐ๋ฆฌ๋Š” ์ถฉ๋Œ ์ธ์‹ ๋งํฌ ์ ์‘ ๊ธฐ๋ฒ•์ธ COALA ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. COALA ๋Š” k-means ๋ฌด๊ฐ๋… ํด๋Ÿฌ์Šคํ„ฐ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์‚ฌ์šฉํ•˜์—ฌ channel quality indicator (CQI) ๋ฆฌํฌํŠธ ์ค‘ ์ถฉ๋Œ ๊ฐ„์„ญ์— ์˜ํ–ฅ์„ ๋ฐ›์€ CQI ๋ฆฌํฌํŠธ๋“ค์„ ๊ตฌ๋ณ„ํ•ด๋‚ด๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋‹ค์Œ ์ „์†ก์„ ์œ„ํ•œ ์ตœ์ ์˜ MCS๋ฅผ ์„ ํƒํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์‹ค์ธก์„ ํ†ตํ•˜์—ฌ COALA ๊ฐ€ ์ •ํ™•ํ•˜๊ฒŒ ์ถฉ๋Œ์„ ๊ฐ์ง€ํ•ด๋ƒ„์„ ๋ณด์ธ๋‹ค. ๋˜ํ•œ ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ COALA ๊ฐ€ AMC ๋Œ€๋น„ ์ตœ๋Œ€ 74.9%์˜ ์‚ฌ์šฉ์ž ์ธ์‹ ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ์…‹์งธ, ์šฐ๋ฆฌ๋Š” ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์˜ ๋ถ€์ž‘์šฉ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์‹  ๋‹จ๋ง์„ ๊ณ ๋ คํ•˜์—ฌ ์ „์†ก ํŒŒ์›Œ ๋ฐ ์—๋„ˆ์ง€ ๊ฒ€์ถœ ์—ญ์น˜๋ฅผ ์ ์‘์ ์œผ๋กœ ์กฐ์ ˆํ•˜๋Š” PETAL ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋จผ์ € ์ˆ˜์‹  ๋‹จ๋ง์„ ๊ณ ๋ คํ•˜์ง€ ์•Š๊ณ  ๊ณต๊ฒฉ์ ์œผ๋กœ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•˜๋Š” baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ค๊ณ„ํ•˜๊ณ  ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์ˆ˜์‹  ๋‹จ๋ง์ด ๊ฐ„์„ญ์›์— ๊ฐ€๊นŒ์šด ๊ฒฝ์šฐ baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์ด ์‹ฌ๊ฐํ•˜๊ฒŒ ์—ดํ™”๋จ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ PETAL ์€ ์ˆ˜์‹  ๋‹จ๋ง๋กœ๋ถ€ํ„ฐ ๋ฐ›์€ CQI ๋ฆฌํฌํŠธ ์ •๋ณด์™€ ์ฑ„๋„ ์ ์œ  ์‹œ์ ๊นŒ์ง€์˜ ํ‰๊ท  ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ด์šฉํ•˜์—ฌ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•  ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ๊ณผ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•˜์ง€ ์•Š์„ ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์„ ๋น„๊ตํ•˜์—ฌ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•  ๋•Œ ์˜ˆ์ƒ๋˜๋Š” ์ฃผํŒŒ์ˆ˜ ํšจ์œจ์ด ๋” ํด ๋•Œ์—๋งŒ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์„ ํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ PETAL ์ด baseline ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋Œ€๋น„ ์ตœ๋Œ€ 329%์˜ ์ˆ˜์œจ ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ๊ฐ€์ ธ์˜ด์„ ๋ณด์ธ๋‹ค. ์š”์•ฝํ•˜์ž๋ฉด, ์šฐ๋ฆฌ๋Š” LAA์˜ ๋“ฑ์žฅ๊ณผ ํ•จ๊ป˜ ์ƒˆ๋กญ๊ฒŒ ๋Œ€๋‘๋˜๋Š” ํฅ๋ฏธ๋กœ์šด ๋ฌธ์ œ๋“ค์„ ํ™•์ธํ•˜๊ณ  ๋ฌธ์ œ๋“ค์˜ ์‹ฌ๊ฐ์„ฑ์„ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ์‚ดํŽด๋ณด๊ณ  ์ด ๋Ÿฌํ•œ ๋ฌธ์ œ๋“ค์„ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. Wi-Fi์™€ LAA ์‚ฌ์ด์˜ airtime ๊ณต์ •์„ฑ์€ LAA์˜ ์—ฐ์† ์ „์†ก ์‹œ๊ฐ„์„ ์ ์‘์ ์œผ๋กœ ์กฐ์ ˆํ•˜์—ฌ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ๋งํฌ ์ ์‘ ์ •ํ™•๋„์™€ ๊ณต๊ฐ„ ์žฌ์‚ฌ์šฉ ๋™์ž‘์˜ ํšจ์œจ์„ฑ์€ CQI ๋ฆฌํฌํŠธ๋“ค์˜ ๋ถ„ํฌ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์˜ ์„ฑ๋Šฅ์€ ์‹œ์Šคํ…œ ๋ ˆ๋ฒจ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค.1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview of Existing Approaches . . . . . . . . . . . . . . . . . . . 2 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3.1 RACOTA: Receiver-Aware Channel Occupancy Time Adaptation for LTE-LAA . . . . . . . 2 1.3.2 COALA: Collision-Aware Link Adaptation for LTE-LAA . . 3 1.3.3 PETAL: Power and Energy Detection Threshold Adaptation for LAA . . . . . . . . . . . . . . 4 1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . 5 2 RACOTA:Receiver-AwareChannelOccupancyTimeAdaptationforLTE- LAA 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 MAC Mechanisms of Wi-Fi and LAA . . . . . . . . . . . . . . . . . 10 2.3.1 Wi-Fi MAC Operation . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 LAA Listen-Before-Talk (LBT) Mechanism . . . . . . . . . . 11 2.3.3 Wide Bandwidth Operation . . . . . . . . . . . . . . . . . . 13 2.4 Coexistence performance of LAA and Wi-Fi . . . . . . . . . . . . . . 14 2.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.2 Unfairness between LAA and Wi-Fi . . . . . . . . . . . . . . 15 2.5 Receiver-Aware COT Adaptation Algorithm . . . . . . . . . . . . . . 17 2.5.1 Saturation Detection (SD) . . . . . . . . . . . . . . . . . . . 20 2.5.2 Receiver-Aware COT Decision . . . . . . . . . . . . . . . . . 22 2.6 Performance Evaluation of SD Algorithm . . . . . . . . . . . . . . . 22 2.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . 22 2.6.2 PPDUMaxTime Detection . . . . . . . . . . . . . . . . . . . 24 2.6.3 Saturation Detection Performance . . . . . . . . . . . . . . . 26 2.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.7.1 Saturated Traffic Scenario . . . . . . . . . . . . . . . . . . . 28 2.7.2 Unsaturated Traffic Scenario . . . . . . . . . . . . . . . . . . 30 2.7.3 Bursty Traffic Scenario . . . . . . . . . . . . . . . . . . . . . 30 2.7.4 Heterogeneous Wi-Fi Traffic Generation Scenario . . . . . . 31 2.7.5 Multiple Node Scenario . . . . . . . . . . . . . . . . . . . . 34 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 COALA: Collision-Aware Link Adaptation for LTE-LAA 36 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Backgound and Related Work . . . . . . . . . . . . . . . . . . . . . 38 3.2.1 LAA and LBT . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.2.2 AMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.3 Inter-Cell Interference Cancellation . . . . . . . . . . . . . . 39 3.2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Impact of Collision to Link Adaptation . . . . . . . . . . . . . . . . . 41 3.4 COALA: Collision-aware Link Adaptation . . . . . . . . . . . . . . . 47 3.4.1 CQI Clustering Algorithm . . . . . . . . . . . . . . . . . . . 48 3.4.2 Collision Detection and Collision Probability Estimation . . . 48 3.4.3 Suitable MCS Selection . . . . . . . . . . . . . . . . . . . . 49 3.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5.1 Prototype-based Feasibility Study . . . . . . . . . . . . . . . 51 3.5.2 Contention Collision with LAA eNBs . . . . . . . . . . . . . 53 3.5.3 Hidden Collision . . . . . . . . . . . . . . . . . . . . . . . . 57 3.5.4 Bursty Hidden Collision . . . . . . . . . . . . . . . . . . . . 58 3.5.5 Contention Collision with Wi-Fi Transmitters . . . . . . . . . 58 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 PETAL: Power and Energy Detection Threshold Adaptation for LAA 62 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 Backgound and Related Work . . . . . . . . . . . . . . . . . . . . . 64 4.2.1 Energy Detection Threshold . . . . . . . . . . . . . . . . . . 64 4.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.3 Baseline Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.3.1 Design of the Baseline Algorithm . . . . . . . . . . . . . . . 65 4.3.2 Performance of the Baseline Algorithm . . . . . . . . . . . . 66 4.4 PETAL: Power and Energy Detection Threshold Adaptation . . . . . 68 4.4.1 CQI Management . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.2 Success Probability and Airtime Ratio Estimation . . . . . . . 69 4.4.3 CQI Clustering Algorithm . . . . . . . . . . . . . . . . . . . 71 4.4.4 SR Decision . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.5.1 Two Cell Scenario . . . . . . . . . . . . . . . . . . . . . . . 73 4.5.2 Coexistence with Standard LAA . . . . . . . . . . . . . . . . 75 4.5.3 Four Cell Scenario . . . . . . . . . . . . . . . . . . . . . . . 76 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5 Concluding Remarks 79 5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 79 Abstract (In Korean) 88 ๊ฐ์‚ฌ์˜ ๊ธ€ 92Docto

    Static Contention Window Method for Improved LTE-LAA/Wi-Fi Coexistence in Unlicensed Bands

    Get PDF

    Measurement and Optimization of LTE Performance

    Get PDF
    4G Long Term Evolution (LTE) mobile system is the fourth generation communication system adopted worldwide to provide high-speed data connections and high-quality voice calls. Given the recent deployment by mobile service providers, unlike GSM and UMTS, LTE can be still considered to be in its early stages and therefore many topics still raise great interest among the international scientific research community: network performance assessment, network optimization, selective scheduling, interference management and coexistence with other communication systems in the unlicensed band, methods to evaluate human exposure to electromagnetic radiation are, as a matter of fact, still open issues. In this work techniques adopted to increase LTE radio performances are investigated. One of the most wide-spread solutions proposed by the standard is to implement MIMO techniques and within a few years, to overcome the scarcity of spectrum, LTE network operators will offload data traffic by accessing the unlicensed 5 GHz frequency. Our Research deals with an evaluation of 3GPP standard in a real test best scenario to evaluate network behavior and performance
    • โ€ฆ
    corecore