9,021 research outputs found

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Benets of tight coupled architectures for the integration of GNSS receiver and Vanet transceiver

    Get PDF
    Vehicular adhoc networks (VANETs) are one emerging type of networks that will enable a broad range of applications such as public safety, traffic management, traveler information support and entertain ment. Whether wireless access may be asynchronous or synchronous (respectively as in the upcoming IEEE 8021.11p standard or in some alternative emerging solutions), a synchronization among nodes is required. Moreover, the information on position is needed to let vehicular services work and to correctly forward the messages. As a result, timing and positioning are a strong prerequisite of VANETs. Also the diffusion of enhanced GNSS Navigators paves the way to the integration between GNSS receivers and VANET transceiv ers. This position paper presents an analysis on potential benefits coming from a tightcoupling between the two: the dissertation is meant to show to what extent Intelligent Transportation System (ITS) services could benefit from the proposed architectur

    Improving performance of pedestrian positioning by using vehicular communication signals

    Get PDF
    Pedestrian-to-vehicle communications, where pedestrian devices transmit their position information to nearby vehicles to indicate their presence, help to reduce pedestrian accidents. Satellite-based systems are widely used for pedestrian positioning, but have much degraded performance in urban canyon, where satellite signals are often obstructed by roadside buildings. In this paper, we propose a pedestrian positioning method, which leverages vehicular communication signals and uses vehicles as anchors. The performance of pedestrian positioning is improved from three aspects: (i) Channel state information instead of RSSI is used to estimate pedestrian-vehicle distance with higher precision. (ii) Only signals with line-of-sight path are used, and the property of distance error is considered. (iii) Fast mobility of vehicles is used to get diverse measurements, and Kalman filter is applied to smooth positioning results. Extensive evaluations, via trace-based simulation, confirm that (i) Fixing rate of positions can be much improved. (ii) Horizontal positioning error can be greatly reduced, nearly by one order compared with off-the-shelf receivers, by almost half compared with RSSI-based method, and can be reduced further to about 80cm when vehicle transmission period is 100ms and Kalman filter is applied. Generally, positioning performance increases with the number of available vehicles and their transmission frequency

    A New Vehicle Localization Scheme Based on Combined Optical Camera Communication and Photogrammetry

    Full text link
    The demand for autonomous vehicles is increasing gradually owing to their enormous potential benefits. However, several challenges, such as vehicle localization, are involved in the development of autonomous vehicles. A simple and secure algorithm for vehicle positioning is proposed herein without massively modifying the existing transportation infrastructure. For vehicle localization, vehicles on the road are classified into two categories: host vehicles (HVs) are the ones used to estimate other vehicles' positions and forwarding vehicles (FVs) are the ones that move in front of the HVs. The FV transmits modulated data from the tail (or back) light, and the camera of the HV receives that signal using optical camera communication (OCC). In addition, the streetlight (SL) data are considered to ensure the position accuracy of the HV. Determining the HV position minimizes the relative position variation between the HV and FV. Using photogrammetry, the distance between FV or SL and the camera of the HV is calculated by measuring the occupied image area on the image sensor. Comparing the change in distance between HV and SLs with the change in distance between HV and FV, the positions of FVs are determined. The performance of the proposed technique is analyzed, and the results indicate a significant improvement in performance. The experimental distance measurement validated the feasibility of the proposed scheme

    Implicit Cooperative Positioning in Vehicular Networks

    Get PDF
    Absolute positioning of vehicles is based on Global Navigation Satellite Systems (GNSS) combined with on-board sensors and high-resolution maps. In Cooperative Intelligent Transportation Systems (C-ITS), the positioning performance can be augmented by means of vehicular networks that enable vehicles to share location-related information. This paper presents an Implicit Cooperative Positioning (ICP) algorithm that exploits the Vehicle-to-Vehicle (V2V) connectivity in an innovative manner, avoiding the use of explicit V2V measurements such as ranging. In the ICP approach, vehicles jointly localize non-cooperative physical features (such as people, traffic lights or inactive cars) in the surrounding areas, and use them as common noisy reference points to refine their location estimates. Information on sensed features are fused through V2V links by a consensus procedure, nested within a message passing algorithm, to enhance the vehicle localization accuracy. As positioning does not rely on explicit ranging information between vehicles, the proposed ICP method is amenable to implementation with off-the-shelf vehicular communication hardware. The localization algorithm is validated in different traffic scenarios, including a crossroad area with heterogeneous conditions in terms of feature density and V2V connectivity, as well as a real urban area by using Simulation of Urban MObility (SUMO) for traffic data generation. Performance results show that the proposed ICP method can significantly improve the vehicle location accuracy compared to the stand-alone GNSS, especially in harsh environments, such as in urban canyons, where the GNSS signal is highly degraded or denied.Comment: 15 pages, 10 figures, in review, 201

    An Empirical Air-to-Ground Channel Model Based on Passive Measurements in LTE

    Get PDF
    In this paper, a recently conducted measurement campaign for unmanned-aerial-vehicle (UAV) channels is introduced. The downlink signals of an in-service long-time-evolution (LTE) network which is deployed in a suburban scenario were acquired. Five horizontal and five vertical flight routes were considered. The channel impulse responses (CIRs) are extracted from the received data by exploiting the cell specific signals (CRSs). Based on the CIRs, the parameters of multipath components (MPCs) are estimated by using a high-resolution algorithm derived according to the space-alternating generalized expectation-maximization (SAGE) principle. Based on the SAGE results, channel characteristics including the path loss, shadow fading, fast fading, delay spread and Doppler frequency spread are thoroughly investigated for different heights and horizontal distances, which constitute a stochastic model.Comment: 15 pages, submitted version to IEEE Transactions on Vehicular Technology. Current status: Early acces
    • …
    corecore