3 research outputs found

    A Three-Point Directional Search Block Matching Algorithm

    Get PDF
    This paper proposes compact directional asymmetric search patterns, which we have named as three-point directional search (TDS). In most fast search motion estimation algorithms, a symmetric search pattern is usually set at the minimum block distortion point at each step of the search. The design of the symmetrical pattern in these algorithms relies primarily on the assumption that the direction of convergence is equally alike in each direction with respect to the search center. Therefore, the monotonic property of real-world video sequences is not properly used by these algorithms. The strategy of TDS is to keep searching for the minimum block distortion point in the most probable directions, unlike the previous fast search motion estimation algorithms where all the directions are checked. Therefore, the proposed method significantly reduces the number of search points for locating a motion vector. Compared to conventional fast algorithms, the proposed method has the fastest search speed and most satisfactory PSNR values for all test sequences

    A Survey on Block Matching Algorithms for Video Coding

    Get PDF
    Block matching algorithm (BMA) for motion estimation (ME) is the heart to many motion-compensated video-coding techniques/standards, such as ISO MPEG-1/2/4 and ITU-T H.261/262/263/264/265, to reduce the temporal redundancy between different frames. During the last three decades, hundreds of fast block matching algorithms have been proposed. The shape and size of search patterns in motion estimation will influence more on the searching speed and quality of performance. This article provides an overview of the famous block matching algorithms and compares their computational complexity and motion prediction quality

    Block Matching Algorithms for the Estimation of Motion in Image Sequences: Analysis

    Get PDF
    Several video coding standards and techniques have been introduced for multimedia applications, particularly the h.26x series for video processing. These standards employ motion estimation processing to reduce the amount of data that is required to store or transmit the video. The motion estimation process is an inextricable part of the video coding as it removes the temporal redundancy between successive frames of video sequences. This paper is about these motion estimation algorithms, their search procedures, complexity, advantages, and limitations. A survey of motion estimation algorithms including full search, many fast, and fast full search block-based algorithms has been presented. An evaluation of up-to-date motion estimation algorithms, based on several empirical results on several test video sequences, is presented as well
    corecore