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Abstract 

Several video coding standards and techniques have been introduced for multimedia applications, particularly the h.26x series for 
video processing. These standards employ motion estimation processing to reduce the amount of data that is required to store or 
transmit the video. The motion estimation process is an inextricable part of the video coding as it removes the temporal 
redundancy between successive frames of video sequences. This paper is about these motion estimation algorithms, their search 
procedures, complexity, advantages, and limitations. A survey of motion estimation algorithms including full search, many fast, 
and fast full search block-based algorithms has been presented. An evaluation of up-to-date motion estimation algorithms, based 
on several empirical results on several test video sequences, is presented as well. 
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1. Introduction 

At present, online videos play a significant role in everyday life and video technology has become the future of 
content marketing. The basic task of video coding is to reduce the huge amount of raw data in a video sequence by 
removing spatial and temporal redundancies in video data. Motion estimation technique plays an important role in 
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the video coding process by removing temporal redundancy of video signal. The simple and efficient motion 
estimation technique is the block-based motion estimation (BBME) technique, which has been adopted in many 
video coding standards such as h.26x series and MPEGx series [1] –[6]. In real-time video processing, the Full-
Search (FS) algorithm demands enormous computations. The huge computational cost of the FS algorithm has laid 
the foundations for broad and deep research in motion estimation. The research has given many fast block matching 
algorithms. These algorithms scan roughly be categorized as fast search [7]–[50] and fast full-search [51]–[59] block 
matching algorithms. 

In this paper, an overview of selected algorithms in the last forty years and a comprehensive comparison of some 
well-known algorithms in terms of computational complexity and error distortion are presented. The rest of the 
paper is organized as follows. In section 2, the brief analysis of fast search and fast full-search block-based motion 
estimation algorithms are presented. The section-3 gives a comparison of some well-known algorithms. Finally, the 
conclusions are presented in section 4. 

2. Block-Based Motion Estimation Algorithms 

The key goal of block-based motion estimation algorithms is to find out the magnitude and direction of motion 
(motion vector) between a macro-block of the current frame and the best-matched candidate block of the reference 
frame. The most commonly used matching criterion which measures the error distortion between the macroblock of 
current fame and candidate blocks in the reference frame is the sum of absolute difference (SAD). The SAD 
between an M×N size macroblock with a top-left corner at (p, q) and an M × N size candidate block with a top-left 
corner at (p + x, q + y) is defined in the eq (1). 

𝑆𝑆𝑆𝑆𝑆𝑆	(𝑥𝑥, 𝑦𝑦) = + +|𝐼𝐼(𝑝𝑝 + 𝑖𝑖, 𝑞𝑞 + 𝑗𝑗) − 𝑅𝑅(𝑝𝑝 + 𝑥𝑥 + 𝑖𝑖, 𝑞𝑞 + 𝑦𝑦 + 𝑗𝑗)	|																																																																														(1)
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where I (.,.) and R (.,.) denote current frame and reference frame pixel values. The coordinates of motion vectors 
‘x’ and ‘y’ are defined in the eq (2).  

(𝑥𝑥, 𝑦𝑦) = 	𝑎𝑎𝑎𝑎𝑎𝑎	 min
(+,,.,)∈1

𝑆𝑆𝑆𝑆𝑆𝑆	(𝑥𝑥<, 𝑦𝑦<)																																																																																																																																										(2) 

where R={(𝑥𝑥<, 𝑦𝑦<) | -s≤𝑥𝑥<, 𝑦𝑦<≤ d} and ‘d’ represent the search range. It is obvious from eq (2) that the SAD criterion 
involves (M×N)−1 addition operations, M×N absolute operations, and M×N subtraction operations i.e.one SAD 
computation requires 3×M×N operations approximately. 

2.1. Fast Search Block-Based Motion Estimation Algorithms 

To reduce the huge computational cost of the FS algorithm, many fast search block-based motion estimation 
algorithms [7]–[50] have been presented at the cost of a slight reduction in error distortion given by peak signal-to-
noise ratio (PSNR). These algorithms may be classified into the following categories: reduction in several search 
points [7]–[27], predictive motion estimation [28]–[34], adaptive search pattern switching strategy [35]–[38], multi-
resolution motion estimation [39]–[45] and fractional-pixel interpolation [46]–[50]. Present fast search block-based 
motion estimation algorithms belong to any one of them or utilize a combination of the above categories. In general, 
the fast search block matching algorithms which belong to a reduction in many search points category [7]–[27] are 
mainly developed with an assumption that the error between a macroblock and a candidate block increases 
monotonically as the search point moves away from the optimal search point. In the early 1980s, some fast search 
block-based motion estimation algorithms such as the Three-Step Search (TSS) [7], two-dimensional logarithmic 
search (TDL) [8], the Conjugate Directional Search (CDS), and its simplified version one-at-a-time search (OTS) 
[9], etc. were proposed.  

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.09.070&domain=pdf
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the video coding process by removing temporal redundancy of video signal. The simple and efficient motion 
estimation technique is the block-based motion estimation (BBME) technique, which has been adopted in many 
video coding standards such as h.26x series and MPEGx series [1] –[6]. In real-time video processing, the Full-
Search (FS) algorithm demands enormous computations. The huge computational cost of the FS algorithm has laid 
the foundations for broad and deep research in motion estimation. The research has given many fast block matching 
algorithms. These algorithms scan roughly be categorized as fast search [7]–[50] and fast full-search [51]–[59] block 
matching algorithms. 

In this paper, an overview of selected algorithms in the last forty years and a comprehensive comparison of some 
well-known algorithms in terms of computational complexity and error distortion are presented. The rest of the 
paper is organized as follows. In section 2, the brief analysis of fast search and fast full-search block-based motion 
estimation algorithms are presented. The section-3 gives a comparison of some well-known algorithms. Finally, the 
conclusions are presented in section 4. 

2. Block-Based Motion Estimation Algorithms 

The key goal of block-based motion estimation algorithms is to find out the magnitude and direction of motion 
(motion vector) between a macro-block of the current frame and the best-matched candidate block of the reference 
frame. The most commonly used matching criterion which measures the error distortion between the macroblock of 
current fame and candidate blocks in the reference frame is the sum of absolute difference (SAD). The SAD 
between an M×N size macroblock with a top-left corner at (p, q) and an M × N size candidate block with a top-left 
corner at (p + x, q + y) is defined in the eq (1). 
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where I (.,.) and R (.,.) denote current frame and reference frame pixel values. The coordinates of motion vectors 
‘x’ and ‘y’ are defined in the eq (2).  
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where R={(𝑥𝑥<, 𝑦𝑦<) | -s≤𝑥𝑥<, 𝑦𝑦<≤ d} and ‘d’ represent the search range. It is obvious from eq (2) that the SAD criterion 
involves (M×N)−1 addition operations, M×N absolute operations, and M×N subtraction operations i.e.one SAD 
computation requires 3×M×N operations approximately. 

2.1. Fast Search Block-Based Motion Estimation Algorithms 

To reduce the huge computational cost of the FS algorithm, many fast search block-based motion estimation 
algorithms [7]–[50] have been presented at the cost of a slight reduction in error distortion given by peak signal-to-
noise ratio (PSNR). These algorithms may be classified into the following categories: reduction in several search 
points [7]–[27], predictive motion estimation [28]–[34], adaptive search pattern switching strategy [35]–[38], multi-
resolution motion estimation [39]–[45] and fractional-pixel interpolation [46]–[50]. Present fast search block-based 
motion estimation algorithms belong to any one of them or utilize a combination of the above categories. In general, 
the fast search block matching algorithms which belong to a reduction in many search points category [7]–[27] are 
mainly developed with an assumption that the error between a macroblock and a candidate block increases 
monotonically as the search point moves away from the optimal search point. In the early 1980s, some fast search 
block-based motion estimation algorithms such as the Three-Step Search (TSS) [7], two-dimensional logarithmic 
search (TDL) [8], the Conjugate Directional Search (CDS), and its simplified version one-at-a-time search (OTS) 
[9], etc. were proposed.  
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In the TSS algorithm, the search procedure employs a rectangular-shaped search pattern which consists of nine 
search points including the center at each step. Initially, the step size is taken as ceil (s/2) and is reduced by a factor 
of two in the subsequent steps, where s is the search range. The search stops when the step size is reduced to 1. Fig. 
1(a) shows an example of the TSS search procedure to find a motion vector at (3, -2). The total number of steps and 
the total number of checking points are given by log2(s + 1) and 1 + 8*[log2(s + 1)] respectively. The NTSS 
algorithm, proposed by Ren Xiang Li et al., performs better than TSS in terms of motion prediction quality and 
computational complexity while retaining the regularity and simplicity of the TSS algorithm. The NTSS algorithm is 
developed mainly with an assumption that the motion vector distribution of most real-world video sequences is 
center biased. Therefore, besides the original search points of TSS, NTSS checks eight additional search points 
around the search center at the first step (total 17) as shown in Fig. 1(b). Furthermore, the NTSS quickly identifies 
stationary and quasi-stationary blocks by applying a halfway stop technique. In the first step, the minimum BDM 
point may occur at the search window center, at any one of the eight search points around the search center, or at 
any one of the remaining eight search points. In the first case, the block is considered a stationary block, and the 
search stops. In the second case, the block is considered as a quasi-stationary block and the search stops after 
checking eight search points around the minimum BDM. In the final case (if the block is neither stationary nor 
quasi-stationary), the search follows the complete TSS procedure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                (a)                                                                                                                    (b) 
Fig.1 (a) An example of a search procedure of the TSS algorithm for finding motion vector (3, −2). Each search point is indicated by its 

search step number and the red-colored point is the minimum BDM point, (b) An example of a search procedure of NTSS for finding motion 
vector (2, −2). Each search point is indicated by its search step number and the red-colored point is the minimum BDM point. 

In [13], a Four-Step Search (4SS) algorithm has been proposed for motion estimation [13]. This algorithm 
includes a half−way stop technique and center-biased motion vector distribution characteristic similar to NTSS. 
However, the number of block matches of 4SS in the worst case is 27 when the maximum search range is ±7. With 
the maximum search range of ±7, the 4SS employs two different search patterns with 5×5 and 3×3 square window 
sizes. For the first three search steps, if the minimum BDM search point is positioned at the center the search goes 
directly to the fourth search step. An example of a search procedure to find a motion vector at (6, 4) is shown in Fig. 
2(a). One-at-a-time search (OTS) [9] is a 1-D gradient descent search algorithm. At first, OTS searches along the 
horizontal search direction until the minimum BDM value lies between two higher BDM values. Then, the search 
direction changes to the vertical direction until the minimum BDM value is found in the vertical direction. The OTS 
search path to locate motion vector (3, 3) is shown in Fig. 2(b). Several OTS-based motion estimation algorithms 
such as block-based gradient descent search (BBGDS) [14] and directional gradient descent search (DGDS) [15] 
algorithms have been developed. The BBGDS is a 2-D gradient descent search motion estimation algorithm that 
searches for the minimum BDM block along the block-based gradient descent direction. At each search step, it 
applies a square search pattern which consists of nine search points. The eight search points surround the search 
center independently perform motion estimation in all the possible eight directions from the search center. 

4 Author name / Procedia Computer Science 00 (2021) 000–000 

  
                                                      (a)                                                                                                                       (b) 

Fig.2(a). An example of a search procedure of 4SS for finding motion vector (6, 4). Each search point is indicated by its search step number and 
the red-colored point is the minimum BDM point, (b) An example of a search procedure of OTS for finding motion vector (3, 3). Each search 
point is indicated by its search step number and the red-colored point is the minimum BDM point. 

The search continues until the minimum BDM search point is positioned at the search center. An example of a 
BBGDS search path to locate a motion vector at (2, -2) is shown in Fig. 3(a). The DGDS independently applies the 
OTS strategy in eight directions of the search center to find eight directional minimum search points. Among these 
eight directional minimum search points, the minimum one becomes the search center for the next search step. At 
any search step, if the least among eight directional minimum search points in the search center, the search stops 
with the search center as the motion vector. The DGDS search path to locate the motion vector (5, 2) is shown in 
Fig. 3(b).  

  
                                                     (a)                                                                                                                (b) 

Fig. 3(a). An example of a search procedure of BBGDS for finding motion vector (2, -2). Each search point is indicated by its search step number 
and the red-colored point is the minimum BDM point, (b) An example of a search procedure of DGDS for finding motion vector (5, 2), each 
search point is indicated by its search round number, red-colored points are the directional minimum search points and the green-colored point is 
the least of directional minimum search points. 

The diamond search (DS) algorithm [16]–[17] locates a small area of global minimum by applying a large 
diamond search pattern (LDSP) and then traces the global minimum in the located small area by applying a compact 
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any search step, if the least among eight directional minimum search points in the search center, the search stops 
with the search center as the motion vector. The DGDS search path to locate the motion vector (5, 2) is shown in 
Fig. 3(b).  

  
                                                     (a)                                                                                                                (b) 

Fig. 3(a). An example of a search procedure of BBGDS for finding motion vector (2, -2). Each search point is indicated by its search step number 
and the red-colored point is the minimum BDM point, (b) An example of a search procedure of DGDS for finding motion vector (5, 2), each 
search point is indicated by its search round number, red-colored points are the directional minimum search points and the green-colored point is 
the least of directional minimum search points. 

The diamond search (DS) algorithm [16]–[17] locates a small area of global minimum by applying a large 
diamond search pattern (LDSP) and then traces the global minimum in the located small area by applying a compact 
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small diamond search pattern (SDSP). An example of a search procedure to find a motion vector at (3, -2) is shown 
in Fig. 4 (a). DS starts the search by checking 9 search points of LDSP positioned at the search window center. A 
new SDSP or LDSP is centered at a minimum BDM point depending on whether the minimum BDM point is search 
center or not. The search continues until the new SDSP is centered and the minimum BDM point of SDSP will be 
the final motion vector. The Hexagonal Search (HS) algorithm with circle approximated search pattern is proposed 
in [18]. The search procedure of HS is the same as that of DS except that the HS performs a coarse search by using a 
large hexagon search pattern that is close enough to a circle. An example of an HS search path to locate a motion 
vector at (3, -2) is shown in Fig. 4 (b). 

   
                                                   (a)                                                                                                               (b) 

Fig. 4(a) An example of a search procedure of DS for finding motion vector (3, -2). Each search point is indicated by its search step number and 
the red-colored point is the minimum BDM point, (b)An example of a search procedure of HS for finding motion vector (3, -2). Each search point 
is indicated by its search step number and the red-colored point is the minimum BDM point. 

The modifications of HS [19] - [21] are developed for reducing computational cost against the HS algorithm. 
These algorithms essentially focus on methods to improve the inner search procedure of HS. An enhanced 
hexagonal search (EHS) algorithm [19] reduces the search points by employing the six-side-based fast inner search 
method. The EHS algorithm calculates the group-sum distortion to predict a part of the inner search that has to be 
examined. In [20], and enhanced hexagonal search using point-oriented inner search (EHS-POIS) [20] applies to 
mean internal distance to calculate the normalized group distortions of the large hexagon. Then it checks only two 
inner search points which are associated with minimum normalized group distortions. An enhanced hexagonal 
search using direction-oriented inner search (EHS-DOIS) [21] forms a pseudo-points prediction pattern from the 
large hexagon. EHS-DOIS calculates the group distortions of these pseudo-points to select one inner search point. 

The algorithms belong to the predictive motion estimation category [28]–[34] reduces the computational cost 
considerably by using the temporal and/or spatial correlation among motion vectors. In [31], the Motion Vector 
Field Adaptive Search technique (MVFAST) efficiently uses adjacent blocks motion information for performing 
motion estimation effectively. Before starting a search at each macroblock, MVFAST calculates the city block 
lengths of the adjacent motion vectors. This city block length classifies the motion content of the current macroblock 
as high, medium, or slow motion. According to motion activity, the search strategy and search center of the current 
macroblock are determined. Furthermore, a halfway-stop technique is included in MVFAST such that it terminates 
the search early by checking (0, 0) predictor. The search performance of MVFAST is further improved in the 
predictive motion vector field adaptive search technique (PMVFAST) [32] with median predictor and collocated 
block’s motion vector. The PMVFAST employs an adaptively early search termination technique, unlike MVFAST 
where a fixed early search termination technique is used. Enhanced predictive zonal search (EPZS) [34] improves 
the search performance of PMVFAST by using additional higher probable predictors, and with improved threshold 
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calculations. The algorithms belong to the search patterns switching category [35]–[38] employ an adaptive 
switching strategy i.e. the algorithms dynamically apply various search patterns according to the motion activity. 
Consequently, the number of search locations is reduced drastically. An adaptive search pattern switching algorithm 
was proposed in [38]. This algorithm predicts the motion activity of a block and then uses an appropriate search 
pattern for performing motion estimation. For small motions, center-based search patterns such as NTSS, DS, and 
BBGDS are used. The non-center-biased search patterns such as TSS and 4SS are used for large motions. The 
motion content of a block is determined by an error descent rate (EDR). This EDR is calculated from block 
distortions of the search window center and its four neighboring search points. This EDR is defined as EDR = 
DB/DA where DA represents a distortion of the block at the center of the search window and DB represents a 
minimum distortion of the four neighboring blocks of the search window center.  

The algorithms belong to multiresolution techniques [39]–[45] to represent the reference and current frames by 
pyramidal structure with various levels. Each level of this representation is a reduced resolution representation of the 
lower level and is obtained by sub-sampling and spatial low-pass filtering the lower level. The motion field 
estimated at the present coarser resolution level is interpolated to form the initial solution for the motion field at the 
next finer resolution level as this initial solution is more likely to be near the global minimum point. Therefore, the 
search at each resolution level is restricted to a smaller search range than the actual search range at the finest 
resolution level. Consequently, the total computational cost is less than the computational cost demanded in the 
finest resolution directly. The algorithms belong to fractional-pixel motion estimation (FPME) techniques [46]–[50] 
to achieve further reduction in bit rate i.e., improvement in video quality by applying fractional-pixel interpolation 
(FPI) algorithms. 

2.2. Fast Full-Search Block-Based Motion Estimation Algorithms 

The fast full-search algorithms minimize the computational complexity of the motion estimation process while 
preserving the same PSNR performance as the full-search algorithm. Many fast full-search algorithms have been 
proposed in the last four decades. Some eminent algorithms are successive elimination technique-based algorithms 
[51]–[58], partial distortion elimination-based algorithms [75]–[82], winner-update approach-based algorithms [69]–
[70], and projection techniques-based algorithms [71]–[74]. The most popular of these algorithms is the successive 
elimination algorithm (SEA) [51]. 

SEA finds the optimal motion vectors like the full-search algorithm, but with less computational cost. The SEA 
rejects the search points which may not be the best possible search points before computing full distortion measure 
for those search points. SEA skips these impossible search points by examining if the current minimum SAD 
(SADmin) is less than the partial distortion measure. In [52], the block sum pyramid algorithm (BSPA) skips the non-
best candidate blocks by calculating partial errors hierarchically at every candidate block before computing the 
rigorous full distortion. In [53], the multilevel successive elimination algorithm (MSEA) rejects a greater number of 
candidate blocks than those of SEA by using additional boundary levels. MSEA obtains these boundary levels by 
partitioning blocks into four equal-sized sub-blocks continually until a 2×2 sub-block arrives at MSEA has shown 
search speed improvement against SEA by applying these boundary levels sequentially to skip some highly 
impossible search points which could not be rejected by the SEA boundary.  

In MSEA, very large gaps exist between two contiguous boundary levels. Because of such large gaps, the 
effectiveness of MSEA is undermined. In [54], a fine granularity successive elimination (FGSE) is proposed to 
make up for this inefficiency of MSEA. FGSE algorithm reduces the gaps between two contiguous boundary levels 
by increasing the number of boundary levels. So, highly impossible search points are filtered out earlier in the FGSE 
algorithm than in MSEA. In [55], an adaptive MSEA (AdaMSEA) divides the search area based on the homogeneity 
of the macroblock. To increase the possibility of skipping impossible search points in the early stage, the blocks 
with large variances are partitioned into sub-blocks first. A winner update algorithm with an integral image (WUI) is 
proposed in [59]. This algorithm replaces the hierarchical pyramid structure of the matching block with an integral 
image. This integral image facilitates the evaluation of partial block sum norms dynamically and therefore, WUI 
reduces the computational complexity of motion estimation. 
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small diamond search pattern (SDSP). An example of a search procedure to find a motion vector at (3, -2) is shown 
in Fig. 4 (a). DS starts the search by checking 9 search points of LDSP positioned at the search window center. A 
new SDSP or LDSP is centered at a minimum BDM point depending on whether the minimum BDM point is search 
center or not. The search continues until the new SDSP is centered and the minimum BDM point of SDSP will be 
the final motion vector. The Hexagonal Search (HS) algorithm with circle approximated search pattern is proposed 
in [18]. The search procedure of HS is the same as that of DS except that the HS performs a coarse search by using a 
large hexagon search pattern that is close enough to a circle. An example of an HS search path to locate a motion 
vector at (3, -2) is shown in Fig. 4 (b). 
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Fig. 4(a) An example of a search procedure of DS for finding motion vector (3, -2). Each search point is indicated by its search step number and 
the red-colored point is the minimum BDM point, (b)An example of a search procedure of HS for finding motion vector (3, -2). Each search point 
is indicated by its search step number and the red-colored point is the minimum BDM point. 

The modifications of HS [19] - [21] are developed for reducing computational cost against the HS algorithm. 
These algorithms essentially focus on methods to improve the inner search procedure of HS. An enhanced 
hexagonal search (EHS) algorithm [19] reduces the search points by employing the six-side-based fast inner search 
method. The EHS algorithm calculates the group-sum distortion to predict a part of the inner search that has to be 
examined. In [20], and enhanced hexagonal search using point-oriented inner search (EHS-POIS) [20] applies to 
mean internal distance to calculate the normalized group distortions of the large hexagon. Then it checks only two 
inner search points which are associated with minimum normalized group distortions. An enhanced hexagonal 
search using direction-oriented inner search (EHS-DOIS) [21] forms a pseudo-points prediction pattern from the 
large hexagon. EHS-DOIS calculates the group distortions of these pseudo-points to select one inner search point. 

The algorithms belong to the predictive motion estimation category [28]–[34] reduces the computational cost 
considerably by using the temporal and/or spatial correlation among motion vectors. In [31], the Motion Vector 
Field Adaptive Search technique (MVFAST) efficiently uses adjacent blocks motion information for performing 
motion estimation effectively. Before starting a search at each macroblock, MVFAST calculates the city block 
lengths of the adjacent motion vectors. This city block length classifies the motion content of the current macroblock 
as high, medium, or slow motion. According to motion activity, the search strategy and search center of the current 
macroblock are determined. Furthermore, a halfway-stop technique is included in MVFAST such that it terminates 
the search early by checking (0, 0) predictor. The search performance of MVFAST is further improved in the 
predictive motion vector field adaptive search technique (PMVFAST) [32] with median predictor and collocated 
block’s motion vector. The PMVFAST employs an adaptively early search termination technique, unlike MVFAST 
where a fixed early search termination technique is used. Enhanced predictive zonal search (EPZS) [34] improves 
the search performance of PMVFAST by using additional higher probable predictors, and with improved threshold 
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calculations. The algorithms belong to the search patterns switching category [35]–[38] employ an adaptive 
switching strategy i.e. the algorithms dynamically apply various search patterns according to the motion activity. 
Consequently, the number of search locations is reduced drastically. An adaptive search pattern switching algorithm 
was proposed in [38]. This algorithm predicts the motion activity of a block and then uses an appropriate search 
pattern for performing motion estimation. For small motions, center-based search patterns such as NTSS, DS, and 
BBGDS are used. The non-center-biased search patterns such as TSS and 4SS are used for large motions. The 
motion content of a block is determined by an error descent rate (EDR). This EDR is calculated from block 
distortions of the search window center and its four neighboring search points. This EDR is defined as EDR = 
DB/DA where DA represents a distortion of the block at the center of the search window and DB represents a 
minimum distortion of the four neighboring blocks of the search window center.  

The algorithms belong to multiresolution techniques [39]–[45] to represent the reference and current frames by 
pyramidal structure with various levels. Each level of this representation is a reduced resolution representation of the 
lower level and is obtained by sub-sampling and spatial low-pass filtering the lower level. The motion field 
estimated at the present coarser resolution level is interpolated to form the initial solution for the motion field at the 
next finer resolution level as this initial solution is more likely to be near the global minimum point. Therefore, the 
search at each resolution level is restricted to a smaller search range than the actual search range at the finest 
resolution level. Consequently, the total computational cost is less than the computational cost demanded in the 
finest resolution directly. The algorithms belong to fractional-pixel motion estimation (FPME) techniques [46]–[50] 
to achieve further reduction in bit rate i.e., improvement in video quality by applying fractional-pixel interpolation 
(FPI) algorithms. 

2.2. Fast Full-Search Block-Based Motion Estimation Algorithms 

The fast full-search algorithms minimize the computational complexity of the motion estimation process while 
preserving the same PSNR performance as the full-search algorithm. Many fast full-search algorithms have been 
proposed in the last four decades. Some eminent algorithms are successive elimination technique-based algorithms 
[51]–[58], partial distortion elimination-based algorithms [75]–[82], winner-update approach-based algorithms [69]–
[70], and projection techniques-based algorithms [71]–[74]. The most popular of these algorithms is the successive 
elimination algorithm (SEA) [51]. 

SEA finds the optimal motion vectors like the full-search algorithm, but with less computational cost. The SEA 
rejects the search points which may not be the best possible search points before computing full distortion measure 
for those search points. SEA skips these impossible search points by examining if the current minimum SAD 
(SADmin) is less than the partial distortion measure. In [52], the block sum pyramid algorithm (BSPA) skips the non-
best candidate blocks by calculating partial errors hierarchically at every candidate block before computing the 
rigorous full distortion. In [53], the multilevel successive elimination algorithm (MSEA) rejects a greater number of 
candidate blocks than those of SEA by using additional boundary levels. MSEA obtains these boundary levels by 
partitioning blocks into four equal-sized sub-blocks continually until a 2×2 sub-block arrives at MSEA has shown 
search speed improvement against SEA by applying these boundary levels sequentially to skip some highly 
impossible search points which could not be rejected by the SEA boundary.  

In MSEA, very large gaps exist between two contiguous boundary levels. Because of such large gaps, the 
effectiveness of MSEA is undermined. In [54], a fine granularity successive elimination (FGSE) is proposed to 
make up for this inefficiency of MSEA. FGSE algorithm reduces the gaps between two contiguous boundary levels 
by increasing the number of boundary levels. So, highly impossible search points are filtered out earlier in the FGSE 
algorithm than in MSEA. In [55], an adaptive MSEA (AdaMSEA) divides the search area based on the homogeneity 
of the macroblock. To increase the possibility of skipping impossible search points in the early stage, the blocks 
with large variances are partitioned into sub-blocks first. A winner update algorithm with an integral image (WUI) is 
proposed in [59]. This algorithm replaces the hierarchical pyramid structure of the matching block with an integral 
image. This integral image facilitates the evaluation of partial block sum norms dynamically and therefore, WUI 
reduces the computational complexity of motion estimation. 
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3. Results 

This section presents the simulation results about the motion prediction quality and computational complexity of 
various up-to-date and famous motion estimation algorithms such as DS, CDS, DGDS, EHS-DOIS, ARPS-2, DASp, 
SEA, MSEA, AdaMSEA, and WUI. Ten test video sequences with different motion contents and different video 
formats (HD, CIF, and QCIF) have been used to analyze the performance of these algorithms. Ten test videos 
contain various motion contents and have different resolutions. Kirsten-Sara and Akiyo test videos contain low-
motion content i.e., maximum blocks are stationary blocks. Suzie, Mobile, and Flower are the test videos that 
consist of medium motions with stationary and quasi-stationary blocks. Mobile is a typical test video in which the 
local and global motions are complex. Rocket launch, Cricket, and Foreman test videos have large motions. Rhinos 
and Robot boat test videos consist of complex motions with fast camera zooming and panning. The search ranges 
±63 and ±15 are used for HD test video sequences (Rocket launch and Kirsten-Sara) and the remaining (QCIF and 
CIF) video sequences respectively. Block size set to 16 x 16. In the comparison of various algorithms, PSNR is used 
as a measure for motion prediction quality and an average number of operations per block measures the 
computational complexity. The average numbers of operations per block in each algorithm are summarized in Table 
1. The degree of motion prediction quality of every algorithm with respect to the full search algorithm is shown in 
Table 2. It is very clear from these tables that the fast search algorithms (DS, CDS, DGDS, C, ARPS-2, and DASp) 
reduce the computational complexity significantly but degrade the PSNR performance when compared to the full 
search algorithm. Whereas, the fast-full search algorithms (SEA, MSEA, AdaMSEA and WUI) obtain same PSNR 
of full search but with high computational complexity.  

 
Table 1. The average number of operations per block in each algorithm. 

 
Video 

sequence 

 
FS 

Fast search motion estimation algorithms Fast full-search algorithms 

DS CDS DGDS EHS-
DOIS 

ARPS-
2 DASp SEA MSEA Ada 

MSEA WUI 

Foreman 601520 13203 12398 14334 8178 
7288 

6532 
175080 29301 

25612 25301 

Mobile 668516 8253 7877 8919 5948 
5181 

4174 
270890 30927 

24153 24039 

Rhinos 668516 29327 23440 26515 12990 
11662 

10378 
329652 65321 

50602 49305 

Robot 
boat 668516 26494 22016 25413 12447 

11067 
11943 

363925 72109 
66944 66001 

Suzie 601520 9627 7993 8587 5768 
4805 

4496 
113280 14317 

12209 12152 

Akiyo 601520 6327 6314 6054 5155 
4305 

3551 
24608 6877 

6205 6109 

Cricket 668516 13911 12734 12599 8344 
7508 

6379 
106799 28641 

22943 21513 

Flower 668516 10072 9323 9968 6729 
6194 

5322 
104960 18303 

16112 16001 

Kirsten-
Sara 10813330 7981 7410 7537 5839 

5201 
4218 

216852 63928 
54883 53697 

Rocket 
launch 10813330 13364 12149 12964 8278 

7403 
6752 

284621 82504 
73864 73359 

 
From Table 1, it is obvious that DASp demands a smaller number of operations when compared to other 

algorithms. ARPS-2 is better than DS, CDS, EHS-DOIS, and DGDS in terms of the number of operations. With 
respect to video sequences (Akiyo and Kirsten-Sara) that have small motion content, all the algorithms including 
DASp and ARPS-2 have the approximately same number of operations. However, DASp and ARPS-2 require a 
smaller number of operations irrespective of motion activity in video sequences. It is clear from Table 2 that the 
DGDS obtains better average PSNRs than those of DS, CDS, DASp, ARPS-2, and EHS-DOIS in all the video 
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sequences. On average, DGDS obtains 0.304dB better PSNR than that of CDS. However, CDS requires a smaller 
number of operations when compared to that of DGDS. It is very clear from table 1 that EHS-DOIS finds motion 
vectors with less computational cost when compared to that of DGDS and CDS. However, EHS-DOIS gives the 
least PSNR performance among all the algorithms (refer to Table 2).  On the whole, in terms of the average number 
of operations per block as the indicator for computational complexity, DASp is certainly the best. Simultaneously, 
with reference to PSNR as an indication for the quality of video, the DASp is also apparently better than the DS, 
CDS, EHS-DOIS and ARPS-2 algorithms and comparable to the DGDS. Among fast full-search algorithms (SEA, 
MSEA, AdaMSEA, and WUI), WUI has faster search performance. 

 
Table 2. The degree of motion prediction quality of every algorithm with respect to the full search algorithm 

Video sequence 
 

FS  
or 

Fast full-search algorithms 

Fast search motion estimation algorithms 

DS CDS DGDS EHS-DOIS ARPS-2 DASp 

Foreman 28.89 28.15 28.03 28.28 26.70 28.22 28.05 

Mobile 24.29 23.52 23.85 23.87 22.71 23.63 23.83 

Rhinos 30.23 27.62 27.81 28.40 27.66 27.34 28.35 

Robot boat 30.62 29.21 29.10 29.54 28.83 29.32 29.05 

Suzie 35.90 35.02 35.10 35.25 33.87 35.11 35.13 

Akiyo 44.16 44.16 44.16 44.16 43.25 44.16 44.16 

Cricket 35.95 33.66 33.95 34.99 33.19 33.94 34.67 

Flower 33.69 33.02 33.19 33.35 31.47 33.28 33.17 

Kirsten-Sara 44.74 44.18 44.21 44.39 42.45 44.10 44.17 

Rocket launch 38.95 37.53 37.69 37.90 36.20 37.66 37.89 

 

4. Conclusions 

In the last four decades, multimedia research involves in the development of efficient block matching algorithms 
to decrease the computational cost of motion estimation. These algorithms have been categorized into fast search 
and fast full search algorithms. This paper has presented basic search procedures of well-known fast search and fast 
full search algorithms. A comprehensive analysis of famous and state-of-the-art algorithms in terms of their 
computational costs and motion prediction qualities is presented. 
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3. Results 

This section presents the simulation results about the motion prediction quality and computational complexity of 
various up-to-date and famous motion estimation algorithms such as DS, CDS, DGDS, EHS-DOIS, ARPS-2, DASp, 
SEA, MSEA, AdaMSEA, and WUI. Ten test video sequences with different motion contents and different video 
formats (HD, CIF, and QCIF) have been used to analyze the performance of these algorithms. Ten test videos 
contain various motion contents and have different resolutions. Kirsten-Sara and Akiyo test videos contain low-
motion content i.e., maximum blocks are stationary blocks. Suzie, Mobile, and Flower are the test videos that 
consist of medium motions with stationary and quasi-stationary blocks. Mobile is a typical test video in which the 
local and global motions are complex. Rocket launch, Cricket, and Foreman test videos have large motions. Rhinos 
and Robot boat test videos consist of complex motions with fast camera zooming and panning. The search ranges 
±63 and ±15 are used for HD test video sequences (Rocket launch and Kirsten-Sara) and the remaining (QCIF and 
CIF) video sequences respectively. Block size set to 16 x 16. In the comparison of various algorithms, PSNR is used 
as a measure for motion prediction quality and an average number of operations per block measures the 
computational complexity. The average numbers of operations per block in each algorithm are summarized in Table 
1. The degree of motion prediction quality of every algorithm with respect to the full search algorithm is shown in 
Table 2. It is very clear from these tables that the fast search algorithms (DS, CDS, DGDS, C, ARPS-2, and DASp) 
reduce the computational complexity significantly but degrade the PSNR performance when compared to the full 
search algorithm. Whereas, the fast-full search algorithms (SEA, MSEA, AdaMSEA and WUI) obtain same PSNR 
of full search but with high computational complexity.  

 
Table 1. The average number of operations per block in each algorithm. 
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From Table 1, it is obvious that DASp demands a smaller number of operations when compared to other 

algorithms. ARPS-2 is better than DS, CDS, EHS-DOIS, and DGDS in terms of the number of operations. With 
respect to video sequences (Akiyo and Kirsten-Sara) that have small motion content, all the algorithms including 
DASp and ARPS-2 have the approximately same number of operations. However, DASp and ARPS-2 require a 
smaller number of operations irrespective of motion activity in video sequences. It is clear from Table 2 that the 
DGDS obtains better average PSNRs than those of DS, CDS, DASp, ARPS-2, and EHS-DOIS in all the video 
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sequences. On average, DGDS obtains 0.304dB better PSNR than that of CDS. However, CDS requires a smaller 
number of operations when compared to that of DGDS. It is very clear from table 1 that EHS-DOIS finds motion 
vectors with less computational cost when compared to that of DGDS and CDS. However, EHS-DOIS gives the 
least PSNR performance among all the algorithms (refer to Table 2).  On the whole, in terms of the average number 
of operations per block as the indicator for computational complexity, DASp is certainly the best. Simultaneously, 
with reference to PSNR as an indication for the quality of video, the DASp is also apparently better than the DS, 
CDS, EHS-DOIS and ARPS-2 algorithms and comparable to the DGDS. Among fast full-search algorithms (SEA, 
MSEA, AdaMSEA, and WUI), WUI has faster search performance. 

 
Table 2. The degree of motion prediction quality of every algorithm with respect to the full search algorithm 

Video sequence 
 

FS  
or 

Fast full-search algorithms 

Fast search motion estimation algorithms 
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Mobile 24.29 23.52 23.85 23.87 22.71 23.63 23.83 
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Robot boat 30.62 29.21 29.10 29.54 28.83 29.32 29.05 

Suzie 35.90 35.02 35.10 35.25 33.87 35.11 35.13 

Akiyo 44.16 44.16 44.16 44.16 43.25 44.16 44.16 

Cricket 35.95 33.66 33.95 34.99 33.19 33.94 34.67 

Flower 33.69 33.02 33.19 33.35 31.47 33.28 33.17 

Kirsten-Sara 44.74 44.18 44.21 44.39 42.45 44.10 44.17 

Rocket launch 38.95 37.53 37.69 37.90 36.20 37.66 37.89 

 

4. Conclusions 

In the last four decades, multimedia research involves in the development of efficient block matching algorithms 
to decrease the computational cost of motion estimation. These algorithms have been categorized into fast search 
and fast full search algorithms. This paper has presented basic search procedures of well-known fast search and fast 
full search algorithms. A comprehensive analysis of famous and state-of-the-art algorithms in terms of their 
computational costs and motion prediction qualities is presented. 
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