8,875 research outputs found

    Fog-enabled Edge Learning for Cognitive Content-Centric Networking in 5G

    Full text link
    By caching content at network edges close to the users, the content-centric networking (CCN) has been considered to enforce efficient content retrieval and distribution in the fifth generation (5G) networks. Due to the volume, velocity, and variety of data generated by various 5G users, an urgent and strategic issue is how to elevate the cognitive ability of the CCN to realize context-awareness, timely response, and traffic offloading for 5G applications. In this article, we envision that the fundamental work of designing a cognitive CCN (C-CCN) for the upcoming 5G is exploiting the fog computing to associatively learn and control the states of edge devices (such as phones, vehicles, and base stations) and in-network resources (computing, networking, and caching). Moreover, we propose a fog-enabled edge learning (FEL) framework for C-CCN in 5G, which can aggregate the idle computing resources of the neighbouring edge devices into virtual fogs to afford the heavy delay-sensitive learning tasks. By leveraging artificial intelligence (AI) to jointly processing sensed environmental data, dealing with the massive content statistics, and enforcing the mobility control at network edges, the FEL makes it possible for mobile users to cognitively share their data over the C-CCN in 5G. To validate the feasibility of proposed framework, we design two FEL-advanced cognitive services for C-CCN in 5G: 1) personalized network acceleration, 2) enhanced mobility management. Simultaneously, we present the simulations to show the FEL's efficiency on serving for the mobile users' delay-sensitive content retrieval and distribution in 5G.Comment: Submitted to IEEE Communications Magzine, under review, Feb. 09, 201

    Context-Aware and Adaptable eLearning Systems

    Get PDF
    The full text file attached to this record contains a copy of the thesis without the authors publications attached. The list of publications that are attached to the complete thesis can be found on pages 6-7 in the thesis.This thesis proposed solutions to some shortcomings to current eLearning architectures. The proposed DeLC architecture supports context-aware and adaptable provision of eLearning services and electronic content. The architecture is fully distributed and integrates service-oriented development with agent technology. Central to this architecture is that a node is our unit of computation (known as eLearning node) which can have purely service-oriented architecture, agent-oriented architecture or mixed architecture. Three eLeaerning Nodes have been implemented in order to demonstrate the vitality of the DeLC concept. The Mobile eLearning Node uses a three-level communication network, called InfoStations network, supporting mobile service provision. The services, displayed on this node, are to be aware of its context, gather required learning material and adapted to the learner request. This is supported trough a multi-layered hybrid (service- and agent-oriented) architecture whose kernel is implemented as middleware. For testing of the middleware a simulation environment has been developed. In addition, the DeLC development approach is proposed. The second eLearning node has been implemented as Education Portal. The architecture of this node is poorly service-oriented and it adopts a client-server architecture. In the education portal, there are incorporated education services and system services, called engines. The electronic content is kept in Digital Libraries. Furthermore, in order to facilitate content creators in DeLC, the environment Selbo2 was developed. The environment allows for creating new content, editing available content, as well as generating educational units out of preexisting standardized elements. In the last two years, the portal is used in actual education at the Faculty of Mathematics and Informatics, University of Plovdiv. The third eLearning node, known as Agent Village, exhibits a purely agent-oriented architecture. The purpose of this node is to provide intelligent assistance to the services deployed on the Education Pportal. Currently, two kinds of assistants are implemented in the node - eTesting Assistants and Refactoring eLearning Environment (ReLE). A more complex architecture, known as Education Cluster, is presented in this thesis as well. The Education Cluster incorporates two eLearning nodes, namely the Education Portal and the Agent Village. eLearning services and intelligent agents interact in the cluster

    Optimizing University Mobility : An Internal Navigation and Crowd Management System

    Get PDF
    In the evolving landscape of educational technology, the article explores the critical frontier of indoor navigation systems, focusing on universities. Traditional approaches in higher education often fall short of meeting dynamic user expectations, necessitating revolutionary solutions. This research introduces an innovative internal navigation and crowd management system that seamlessly integrates augmented reality, natural language processing, machine learning, and image processing technologies. The Android platform serves as the foundation, harnessing augmented reality's transformative capabilities to provide real-time visual cues and personalized wayfinding experiences. The voice interaction module, backed by NLP and ML, creates an intelligent, context-aware assistant. The crowd management module, employing advanced image processing, delivers real-time crowd density insights. Personalized recommendations, powered by NLP and ML, offer tailored canteen suggestions based on user preferences. The agmented reality navigation module, using Mapbox, Unity Hub, AR Core, and Vuforia, enriches the user experience with dynamic visual cues. Results reveal the success of each module: the voice interaction module showcases continuous learning, user-centric feedback, contextual guidance excellence, robust security, and multimodal interaction flexibility. The crowd management module excels in video feed processing, image processing with OpenCV, and real-time availability information retrieval. The personalized recommendations module demonstrates high accuracy, equilibrium, and robust performance. The AR navigation module impresses with precision, enriched navigation, and tailored routes through machine learning. This cohesive system sets new benchmarks for user-centric technology in universities. Future work includes multi-university integration, intelligent spatial design, and real-time decision support, paving the way for more efficient, user-centered university experiences and contributing to the advancement of smart university environments. The research serves as a pivotal force in reshaping interactions within university spaces, envisioning a future where technology seamlessly enhances the essence of human interaction in educational environments

    Artificial Intelligence-Enabled Intelligent Assistant for Personalized and Adaptive Learning in Higher Education

    Full text link
    This paper presents a novel framework, Artificial Intelligence-Enabled Intelligent Assistant (AIIA), for personalized and adaptive learning in higher education. The AIIA system leverages advanced AI and Natural Language Processing (NLP) techniques to create an interactive and engaging learning platform. This platform is engineered to reduce cognitive load on learners by providing easy access to information, facilitating knowledge assessment, and delivering personalized learning support tailored to individual needs and learning styles. The AIIA's capabilities include understanding and responding to student inquiries, generating quizzes and flashcards, and offering personalized learning pathways. The research findings have the potential to significantly impact the design, implementation, and evaluation of AI-enabled Virtual Teaching Assistants (VTAs) in higher education, informing the development of innovative educational tools that can enhance student learning outcomes, engagement, and satisfaction. The paper presents the methodology, system architecture, intelligent services, and integration with Learning Management Systems (LMSs) while discussing the challenges, limitations, and future directions for the development of AI-enabled intelligent assistants in education.Comment: 29 pages, 10 figures, 9659 word

    A road-map to personalized context-aware services delivery in construction

    Get PDF
    Existing mobile IT applications in the construction industry are constrained by their reliance on static methods of information delivery, which are often not appropriate to meet changing work demand resulting from dynamic project conditions. This paper focuses on a new interaction paradigm i.e. context-aware information delivery (CAID), which promises to make information provisioning more responsive to workers’ changing work demands. A roadmap to personalized CAID in construction is laid out, with a focus on creating a pervasive user-centred intelligent work environment capable of serving relevant information needs of busy construction professionals by intelligent interpretation of their context. Research approach includes use of scenario planning method. Face-to-face unstructured interviews were arranged with 28 industry and technology experts for scenario validation and provided input for the road-mapping exercise. The research demonstrates that the realisation of the CAID vision is within reach and will tremendously enhance the value proposition of mobile information technology in the construction industry. Context-relevant and personalised information delivery will save valuable time and has the potential to improve efficiency and productivity. It can make construction ICT applications and worker’s immediate work environment more responsive to work demands, thereby allowing better management of construction projects. A key challenge is to link various technology enabling elements with methodological, cultural, social and organisational aspects specific to the construction industry. This would require a multi-disciplinary approach requiring input from different fields, including computer science, ergonomics, social studies and the construction industry

    A multidimensional evaluation framework for personal learning environments

    Get PDF
    Evaluating highly dynamic and heterogeneous Personal Learning Environments (PLEs) is extremely challenging. Components of PLEs are selected and configured by individual users based on their personal preferences, needs, and goals. Moreover, the systems usually evolve over time based on contextual opportunities and constraints. As such dynamic systems have no predefined configurations and user interfaces, traditional evaluation methods often fall short or are even inappropriate. Obviously, a host of factors influence the extent to which a PLE successfully supports a learner to achieve specific learning outcomes. We categorize such factors along four major dimensions: technological, organizational, psycho-pedagogical, and social. Each dimension is informed by relevant theoretical models (e.g., Information System Success Model, Community of Practice, self-regulated learning) and subsumes a set of metrics that can be assessed with a range of approaches. Among others, usability and user experience play an indispensable role in acceptance and diffusion of the innovative technologies exemplified by PLEs. Traditional quantitative and qualitative methods such as questionnaire and interview should be deployed alongside emergent ones such as learning analytics (e.g., context-aware metadata) and narrative-based methods. Crucial for maximal validity of the evaluation is the triangulation of empirical findings with multi-perspective (end-users, developers, and researchers), mixed-method (qualitative, quantitative) data sources. The framework utilizes a cyclic process to integrate findings across cases with a cross-case analysis in order to gain deeper insights into the intriguing questions of how and why PLEs work

    AN ATTEMPT TO DEFINE CONTEXT AWARENESS IN MOBILE E-HEALTH ENVIRONMENTS

    Get PDF
    Nurses, doctors, physiotherapists, psychologists and other professionals or specialists come together to provide care to home residing patients, making continuous assessment, diagnosis and treatment possible beyond the walls of hospitals. Such teams of professionals are focused on each individual patient, and are virtual, i.e. they make decisions without being together physically, dynamically, i.e. professionals come and go as needed, and collaborate, as they combine their knowledge to provide effective care. Our system, coined DITIS, is a web based system that enables the effective management and collaboration of virtual healthcare teams and accessing medical information in a secure manner from a variety of mobile devices from anytime and anyplace, adapting the information according to various parameters like, user role, access right, device capabilities and wireless medium. This paper introduces the DITIS system, and identifies the needs and challenges of co-ordinated teams of multidisciplinary healthcare professionals (HCPs) functioning in a context awareness environment under the wireless environment. Pilo

    Context Aware Middleware Architectures: Survey and Challenges

    Get PDF
    Abstract: Context aware applications, which can adapt their behaviors to changing environments, are attracting more and more attention. To simplify the complexity of developing applications, context aware middleware, which introduces context awareness into the traditional middleware, is highlighted to provide a homogeneous interface involving generic context management solutions. This paper provides a survey of state-of-the-art context aware middleware architectures proposed during the period from 2009 through 2015. First, a preliminary background, such as the principles of context, context awareness, context modelling, and context reasoning, is provided for a comprehensive understanding of context aware middleware. On this basis, an overview of eleven carefully selected middleware architectures is presented and their main features explained. Then, thorough comparisons and analysis of the presented middleware architectures are performed based on technical parameters including architectural style, context abstraction, context reasoning, scalability, fault tolerance, interoperability, service discovery, storage, security & privacy, context awareness level, and cloud-based big data analytics. The analysis shows that there is actually no context aware middleware architecture that complies with all requirements. Finally, challenges are pointed out as open issues for future work
    • …
    corecore