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A Multidimensional Evaluation Framework

for Personal Learning Environments

Effie Lai-Chong Law and Fridolin Wild

Abstract Evaluating highly dynamic and heterogeneous Personal Learning Envi-

ronments (PLEs) is extremely challenging. Components of PLEs are selected and

configured by individual users based on their personal preferences, needs, and

goals. Moreover, the systems usually evolve over time based on contextual oppor-

tunities and constraints. As such dynamic systems have no predefined configura-

tions and user interfaces, traditional evaluation methods often fall short or are even

inappropriate. Obviously, a host of factors influence the extent to which a PLE

successfully supports a learner to achieve specific learning outcomes. We catego-

rize such factors along four major dimensions: technological, organizational,

psycho-pedagogical, and social. Each dimension is informed by relevant theoretical

models (e.g., Information System Success Model, Community of Practice, self-

regulated learning) and subsumes a set of metrics that can be assessed with a range

of approaches. Among others, usability and user experience play an indispensable

role in acceptance and diffusion of the innovative technologies exemplified by

PLEs. Traditional quantitative and qualitative methods such as questionnaire and

interview should be deployed alongside emergent ones such as learning analytics

(e.g., context-aware metadata) and narrative-based methods. Crucial for maximal

validity of the evaluation is the triangulation of empirical findings with multi-

perspective (end-users, developers, and researchers), mixed-method (qualitative,

quantitative) data sources. The framework utilizes a cyclic process to integrate

findings across cases with a cross-case analysis in order to gain deeper insights into

the intriguing questions of how and why PLEs work.
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Introduction

Among others, a critical success factor in technology-enhanced learning is the

personalization of learning experience. As emphatically pointed out in the Leu-

ven/Louvain-la-Neuve Communiqué of the Bologna Process 2020, “student-cen-

tered learning requires empowering individual learners, new approaches to teaching

and learning, effective support and guidance structures and a curriculum focused

more clearly on the learner” (p.3). Personalization is also a key issue for

implementing mechanisms to foster and increase activities in informal and lifelong

learning networks. This implies a need for new technology-enhanced learning

models that start from the learners and satisfy their unique needs in order to achieve

a personalized learning experience for everyone.

Recent discussions about technologies for learning have shifted from institution-

managed learning management systems (LMS) to user-controlled social software

for learning. Indeed, the advent of Web 2.0 technologies has phenomenally

transformed the way in which users consume, communicate, collaborate, and create

information and knowledge on the Web. These technologies have underpinned the

emergent notion of Personal Learning Environment (PLE), which is characterized

by qualities such as personalization, openness, responsiveness, flexibility, share-

ability, interactivity, and sociability. PLEs can be perceived as both a technology

and a pedagogical approach (Attwell 2007; van Harmelen 2006; Johnson

et al. 2011; Johnson and Liber 2008; Schaffert and Kalz 2009) that aim to empower

students to be in charge of their own learning by selecting tools and resources to

create, organize, and package learning content, thereby meeting their personal

needs and goals (McLoughlin and Lee 2010).

Nonetheless, the high hope held for the PLE to be a key enabler for lifelong

learning is yet to be shown because the research and practice on PLE is still

evolving. Specifically, substantive claims about the power of PLE should be

grounded in relevant case studies, which, however, are limited in number and

scope (Johnson et al. 2011). The paucity of case studies and missing evidence on

the success or usefulness of PLEs can be attributed to the lack of a comprehensive

evaluation framework for PLEs. The difficulties of evaluating PLEs have been

documented (e.g., Gillet et al. 2011; Giovannella 2011). While technical

implementations have demonstrated some significant progress (see Chaps. 5 and

8 in this volume), the empirical evaluation of PLEs lacks behind. Indeed, the

development of an evaluation framework for PLEs poses several major challenges:

– PLEs are not a stable technology that can be prepared and used in a controlled

environment. In fact, PLEs do change over time and can be highly dynamic.

– PLEs integrate other technological artifacts that are designed independently

from each other and can stem from different providers. This leads to possible

(unintended) interdependencies, usability issues, and update state problems.

– PLEs are used to combine formal and non-formal learning contexts. Therefore

the purpose of using a PLE can be highly heterogeneous, rendering systematic

comparisons across different learners very difficult.
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To tackle these challenges, mixed-method and multi-perspective evaluation

approaches are deemed relevant to address the complexity of PLE usage and its

effects on learning behaviors and learning outcomes.

Four main perspectives can be identified: technological, organizational, psycho-
pedagogical, and social (short: “TOPS”), with each being informed by specific

concepts and theories and subsuming certain methods and tools (see Fig. 1). They

are elaborated in the following with reference to related work of the ROLE project

(http://www.role-project.eu/).

The “TOPS” Model for Evaluating PLEs

In this section we delineate the individual perspectives of the TOPS model—with

specific emphasis on their respective underlying conceptual and theoretical

frameworks.

Technological Perspective

The technological perspective comprises two main aspects: utility and usability and
user experience. It is to emphasize that the user-centered design (UCD) approaches

underpin the work of PLEs, so not only end-users’ but also developers’ perspectives

should be taken into account.

Fig. 1 Four perspectives (the TOPS model) for PLE evaluation
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Utility

Two major elements of utility to be evaluated are software and documentation,
which are discussed in detail in the following.

Software evaluation pertains to the functionality of different software compo-

nents constituting PLEs, including widgets, widget containers, the widget store,

libraries, services, tools, and the overall interoperability framework. It is essential

to evaluate how useful these components are to enable end-users to accomplish

specific tasks and goals.

As already indicated above, the strict separation of end-users from developers

can be seen as artificial (at least under the UCD approach), thus requiring an

evaluation approach to look also at developers and “power” users who engage in

customization, configuration, or even end-user-driven development (keyword:

mash-ups). Typically, such developers and power users use configuration options,

authoring tools, and APIs allowing for the mash-up of components to customize or

even create new software artifacts.

Specifically, we highlight a list of factors critical for the technical evaluation of

software, which are adopted from constructs of the Information System Success

Model (ISSM) (DeLone and McLean 2003) and the Technology Acceptance Model

(TAM) (Davis 1989; Venkatesh et al. 2003; Venkatesh and Bala 2008) (see Table 1).

Table 1 Constructs relevant to the utility evaluation of PLEs

Construct Factor

System quality Integration

Portability

Availability

Performance

Reliability

Usefulness of features

Completeness of features

Security

Information quality Usefulness of information

Completeness

Correctness

Appropriateness of presentation format

Service quality Responsiveness

Support

Feedback mechanism

Trustworthiness

Use Users, communities

Functionality accessed

Information items accessed

Duration of use

Frequency of use
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An increasingly popular data collection method is automated monitoring: mon-

itoring and data logging for capturing how frequently a service or a feature has been

used and how often different significant events have occurred (Helms et al. 2000).

More specifically, raw data of system use are recorded and then aggregated for

computing measures for individual factors. For example, “mean time to failure” is a

measure for the factor “reliability” under the construct of “system quality” that can

be derived from monitoring data, including information about what and when errors

occur.

Contextual information gathering (i.e., information about the current situation

where a learner deploys specific software) is also important. Noteworthy is that

context has a technical and social aspect: which software/browser is used for

accessing a PLE, which types of data are accessed, and which people interact

with each other in a certain community. In principle, physical context information

can also be recorded if the sensor data required would be available (e.g., GPS

coordinates for spatial location). An example of including contextual data in

evaluation is a factor “Browser Compatibility,” where the number of errors

occurred related to a particular browser can be measured. Similarly, a factor

“Widget Container Interoperability” can be measured by associating errors with a

particular widget container where they occur.

Where it is possible and does not infringe privacy and security regulations, it

may often be safer to capture a broad standard range of monitoring data, especially

as capturing technologies typically require no further human effort beyond initial

setup and the setup is often already integrated into the related software. Subse-

quently, such data can be selected, refined, and processed based on the actual needs

and goals of an evaluation project.

Croll and Power (2009) provide an elaborate list of metrics that can be used for

monitoring usage of web-based technologies. Some of the key metrics relevant to

PLEs are: user-generated content, content popularity, loyalty, search effectiveness,

reflection, enrolment, conversion, and abandonment.

There are a number of ways for collecting data for these metrics. Google
Analytics are a free service to generate a comprehensive range of usage statistics

for any web-based application. Following the insertion of a small JavaScript code

snippet into a given web application, Google starts to record usage statistics

(including simple demographic features and events). Some of the key aspects that

Google can currently track are

– Visitor Tracking: Demographics, conversion, uniqueness, loyalty, etc.

– User Profile: browser, OS, screen resolution, Java availability, flash availability,
connection speed, etc.

– Events: frequency of use of specific event categories, events per visit, total

number of events.

One of the drawbacks of using analytics is the limited capability to provide data

describing how users interact with content and tools (known as attention metadata)

within their environments. Collecting contextualized attention metadata (CAM)

will enable us to infer the ways learners use technologies and tools for specific
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purposes. The CAM approach proposed by Wolpers et al. (2007) supports such

tracking of attention metadata. This approach helps observe the user at the appli-

cation level, enabling association of tool usage with content-specific behavior in
context. The challenge of collecting observation data of user attention unobtru-

sively can be resolved by the CAM approach through integrating the data-capturing

process into a user’s daily working environment. This approach allows integrating

data from web applications (e.g., by mapping the Apache open log file format to

CAM) as well as from desktop applications. CAM helps track learning content

usage, analyze behavioral patterns, provide similarity measures between users, and

allow inferences about user goals. CAM data can be utilized to measure the

effectiveness of PLE technologies in providing the learner with a highly responsive

and personalized learning environment. CAM data can also be used to track and

infer self-regulatory activities for measuring the effectiveness of the psycho-

pedagogical model (Scheffel et al. 2010a, b).

All measures that cannot be derived with automatic monitoring need to be

obtained from users explicitly. The challenge is to identify appropriate techniques

for survey data acquisition with the possible lowest obtrusiveness and highest

intuitiveness for users.

For instance, a lightweight “Requirements Bazaar” approach is integrated into

the ROLE Widget Store (http://role-widgetstore.eu/) similar to other well-accepted

systems such as Google’s Android Market or the Chrome Extensions marketplace.

This is a valuable source of data since their users provide feedback on the quality of

tools, services, and widgets using means such as rating scales, and—where appro-

priate—free text comment boxes.

Documentation evaluation looks into the availability and quality of technical

documentation—a prerequisite for software to be accepted by end-users as well as

developers. To encourage developers to contribute new learning technologies by

mashing up existing software components, it is necessary to ensure that documen-

tation is correct, complete, and tailored to developers’ needs.

With regard to the development of web-based software components, developer

documentation of the infrastructure usually includes the following items:

– The set of initial documents (e.g., an overview of the underlying principles and

overarching architecture).

– The reference documentation with complete information on all supported fea-

tures, usually in the form of API documentation.

– The set of tutorials demonstrating how to use the technology for developments

on simple and useful examples.

Specifically, technical documentation should be tested by inviting developers to

practical sessions, where they are asked to use the infrastructure and accompanying

documentation to realize a small but motivating use case beyond basic tutorial

contents. In such sessions, the developers who authored the documentation can

serve as tutors to be consulted to discuss any problems arising. Such discussions can

be used as individual interviews or focus groups to collect feedback on the quality

of the software as well as documentation. This approach, however, does not scale to
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large groups of developers. This is where the required alternative means such as

online tools are preferred over presence workshops.

Documentation of web-based software is usually supplemented by different

technical means for communicating with the core developers of the original tech-

nology, authors of the documentation (who often are also its developers), and

developers deploying these software artifacts. For instance, developers use online

forums to get in contact with other developers to report problems and ask for help.

Besides bug reports, such comments often contain practical questions about how to

accomplish certain tasks, thus indicating where the existing documentation could

be unclear or incomplete.

Further means to assess the utility of documentation is to directly integrate

ratings, for instance, in the form of 5-star scales, like/dislike buttons or commenting

functions, into the online documentation. In this manner, different factors from the

dimension Information Quality can be surveyed. These (and additional) features are

often already provided by software project management systems such as

SourceForge, GitHub, and the like.

Usability and User Experience

First of all, it is deemed imperative to demarcate usability from user experience

(UX)—two key concepts in the field of human–computer interaction (HCI). One

main distinction is that usability targets instrumental quality, emphasizing the

effectiveness and efficiency of task and goal attainment with interactive technolo-

gies, whereas user experience targets non-instrumental quality (e.g., aesthetics),

going beyond the traditional task-oriented focuses to address users’ affective and

emotional responses (e.g., fun, pleasure, surprise, sad, happy) to interactive tech-

nologies (e.g., Hassenzahl 2013). Hassenzahl’s (2005) oft-cited model on the

pragmatic and hedonic quality illustrates similar arguments. Despite its decade-

long history, some basic conceptual issues in UX are yet to be resolved (Law

et al. 2009; Law, van Schaik & Roto, 2014). While a deeper exploration of such

issues is beyond the scope of this chapter, here we highlight metrics and approaches

relevant to the evaluation of PLEs.

Noteworthy is that usability and user experience evaluations focus on the

interaction design of technological components underpinning PLEs, which none-

theless contribute to the holistic educative experience with PLEs (see also section

“Psycho-pedagogical Aspect”).

Usability

The usability of different technological components of PLEs (section “Utility”) is

to be evaluated based on a combination of metrics identified from the literature
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(e.g., Nielsen 1994) and standards (ISO/IEC 25010:20111; ISO/IEC 9241-1102:

2006 and ISO/IEC 9241-210: 20103). The metrics are listed as follows:

– Learnability: The ability of the technology to enable users to learn with great

ease how to assemble a PLE themselves. If users find it difficult to assemble a

PLE, then the acceptance and uptake may be drastically hindered. Hence, the

assembly process for such an open learning environment should be relatively

straightforward for end-users. Some factors that enable us to ascertain

learnability are consistency of user interface design and predictable system

behavior. Learnability of PLEs is equally important for developers as for

end-users. If developers find it difficult to use PLE software, they may not be

able to create new widgets.

– Efficiency: The ability of the technology to support users to be highly productive.
Features such as consistent look and feel, consistent navigation, frequent feed-

back, and availability of templates to help them quickly assemble their environ-

ments can contribute to the overall efficiency of the PLE software.

– Memorability: The ability of the technology not to require users to reinvest time

in remembering how to use it after a period of nonuse. Closely related with

learnability, memorability can influence the uptake and usage of PLE. The key

success factor for PLE is to make the assembly process of the environment

highly intuitive, using relevant standardized visual cues.

– Error Tolerance: The ability of the technology to avoid catastrophic errors by

making users reconfirm critical actions (e.g., deleting a software component) and

to recover from errors by providing the “un-do” feature that allows users to

reverse their actions.

– Effectiveness: The ability of the technology to help users achieve their goals.

Using PLEs, if learners are able to assemble and personalize their environments

with ease, while at the same time they find the recommendations and rated/

ranked content useful for fulfilling their goal, then we can infer that the tech-

nology is effective and that learners are likely to feel satisfied. More explicit

methods are mentioned above in section “Utility.”

– Flexibility: The ability of the technology to offer a range of services so as to be

able to adapt to task changes. The ability of learners to seamlessly integrate and

use a range of web-based tools and services for assembling their learning

environments and for exporting/importing data as well as settings to other

similar technologies.

– Operability: The ability of the platform to allow users to operate and control it.

– Satisfaction: The ability of the platform to be deployed by users without dis-

comfort. It is highly subjective as compared with the other qualities listed above,

which when realized to a sufficiently large extent, can contribute to overall user

1 Systems and software engineering: Systems and software Quality Requirements and Evaluation.
2 Ergonomics of human-system interaction: Part 110: Dialogue principles.
3 Ergonomics of human-system interaction: Part 210: Human-centered design for interactive

systems.
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satisfaction. Note that in addition to the system and service qualities, informa-

tion quality can play a key part in user satisfaction, according to the ISSM

(DeLone and McLean 2003).

Usability evaluation methods comprise a range of usability inspection methods,
user-based tests, and user surveys, which can be used to evaluate PLEs using the

metrics described above. Inspection methods rely on experts, whereas user-based

tests and user surveys, as the names suggest, involve end-users (an overview, see

Holzinger 2005).

Two commonly used inspection methods are heuristic evaluation and cognitive
walkthrough. For heuristic evaluations, experts examine a system based on ten

usability heuristics or principles that were originally derived from a large database

of common problems. Violating any of such principles is identified as usability

problem of which the severity is estimated so as to inform the urgency and necessity

of its being fixed (Nielsen 1994). The major advantages of this method are that it

can be applied throughout the whole development lifecycle and is, relatively, less

time-consuming. In a cognitive walkthrough, experts analyze a system’s function-

ality with a set of four questions (e.g., “Will the user notice that the correct action is

available?”) to estimate how the user would interact with the system (Lewis and

Wharton 1997). A negative response to any of the questions suggests the identifi-

cation of a usability problem.

All inspection methods, as prediction methods, are prone to false alarms and

results thereof are typically to be verified with user-based tests, such as think aloud
or field design methods and observation methods (e.g., video observation, screen

sharing, mouse tracking, eye tracking). Usability evaluation feedback is deployed

for further development of the system under scrutiny, as they can provide insights

into where and why usability requirements are not met.

Think aloud is a method that requires end-users to constantly think aloud as they

are using a system individually or collaboratively in order to understand how they

perceive the features of the user interface, identify preferences, and discover any

potential misconceptions at early design stages (Dumas and Fox 2007). The draw-

back of this method is that it can be tiring for end-users who have to focus and

behave in a rather unnatural manner by giving a running commentary on their own

actions.

Field methods are a collection of tools and techniques for conducting user

studies in context. Among others, Contextual Inquiry (Beyer and Holtzblatt 1998)

is commonly used field method in research as well as in practice. The main

advantage of such methods is that they provide a development team with data

about what and how (and why) people carry out their tasks in a given environment,

thereby enabling the production of useful and usable systems that meet people’s

needs and goals. The main disadvantage is that they are time-consuming. Nonethe-

less, such methods can be streamlined with respect to the budget available for

evaluation in a project (Wixon et al. 2002).

Furthermore, while the importance of automated monitoring techniques was

already highlighted above, methods such as CAM and Google Analytics may not
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provide sufficient granularity of data to determine the usability of the PLE software.

The ability of CAM to provide granular and contextual data may be useful, but its

appropriateness may not be established unless or until a sufficient amount of data

has been collected. Apart from traditional methods mentioned above, there are two

additional methods that can be useful for small-scale (eye tracking) and large-scale

(mouse tracking) usability evaluations:

– Eye trackingmeasures visual attention as people navigate through websites. It is

useful in quantifying which sections of an interface are read, glanced at, or

skipped/ignored. Eye tracking is generally carried out in laboratories and at a

small scale. It can provide useful information for evaluating the effectiveness of

the learning design (Schwonke et al. 2009; van Gog and Scheiter 2010) and it

can be used to gather data after every redesign phase before large-scale rollout.

– Mouse tracking is a technique for monitoring and visualizing mouse movements

on any web interface. Mouse movements provide key data about usability issues

on a large scale, as users can be observed in their natural habitat in an unobtru-

sive and continuous manner. In most cases, a JavaScript code snippet is inserted

to track mouse movements. Privacy issues must be considered while adopting

this method. Tools like Crazyegg,4 Userfly,5 and Simple Mouse Tracking6 can

be used for this purpose. It should be mentioned that even more so than eye

tracking, data captured with this method represent only part of the story and,

hence, must be triangulated with other qualitative data to ensure completeness

and correct interpretation.

For summative usability evaluation, user surveys are deployed. They are nor-

mally administered in the final phase of a project after end-users interact with an

executable prototype. Among others, the System Usability Scale (SUS) is widely

used in research and practice, as it is simple with only ten items and standardized

with psychometric properties (Brooke 1996).

To study the usage of PLEs, it is crucial to evaluate whether the associated

services and features can help achieve learning objectives. This can be derived from

evaluation metadata such as ratings, bookmarks, tags, and comments provided by

users (Vuorikari and Berendt 2009): One important aspect here is to investigate

how the PLE usage facilitates social interactions, triggers discussions, and

improves the understanding of learning content (Mason and Rennie 2007; Farrell

et al. 2007; Rollett et al. 2007). Moreover, when it comes to learning material

recommended by the system, ratings and like/dislike evaluation metadata can help

assess unobtrusively to what extent learners deem them useful.

4 http://www.crazyegg.com/
5 http://userfly.com/
6 http://smt.speedzinemedia.com/smt/
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User Experience

The literature on UX published since the turn of the millennium indicates that there

are two disparate stances on how UX should be studied (i.e., qualitative versus

quantitative) and that they are not necessarily compatible or can even be antago-

nistic. A major argument between the two positions is the legitimacy of breaking

down experiential qualities into components, rendering them to be measurable. A

rather comprehensive review on the recent UX publications (Bargas-Avila and

Hornbæk 2011) identifies the following observations: UX research studies have

hitherto relied primarily on qualitative methods; among others, emotions, enjoy-

ment, and aesthetics are the most frequently measured dimensions; the products and

use contexts studied are shifted from work to leisure and from controlled tasks to

consumer products and art; the progress on UX measures has thus been slow.

Given that UX has at least to some extent developed from usability, it is not

surprising that UX methods and measures are largely drawn from usability (Tullis

and Albert 2008). However, the notion of UX is much more complex, given a mesh

of psychological, social, and physiological concepts it can be associated with.

Among others, a major concept is emotion or felt experience (McCarthy andWright

2004). As emotion arises from our conscious cognitive interpretations of

perceptual-sensory responses, UX can thus be seen as a cognitive process that can

be modeled and measured (Hartmann et al. 2008).

Larsen and Fredrickson (1999) discussed measurement issues in emotion

research with reference to the influential work of Ekman, Russell, Scherer, and

other scholars in this area. More recent work along this direction has been

conducted (cited in Bargas-Avila et al. 2011). These publications point to a

common observation that measuring emotion is plausible, useful, and necessary.

However, like most, if not all, psychological measurements, they are only approx-

imations (Hand 2004) and should be considered critically. Employing quantitative

measures to the exclusion of qualitative accounts of user experiences, or vice versa,

is too restrictive and may even lead to wrong implications (Law et al. 2014).

There exist a range of UX evaluation methods (e.g., Vermeeren et al. 2010). For

qualitative data, narrative or storytelling methods (e.g., Riessman 2008) are com-

monly employed. For instance, users’ short descriptions about their positive and

negative interaction experiences can be analyzed with the use of machine learning

as well as manual coding approach (e.g., Tuch et al. 2013). For quantitative data,

validated scales with good psychometric properties such as AttrakDiff2

(Hassenzahl and Monk 2010) and PANAS (Positive Affect and Negative Affect

Scale; Watson et al. 1988) are increasingly used.

Especially challenging is to operationalize a diversity of emotions, be they

positive and negative, because teasing out their nuances proves difficult. Common

methods here are self-assessment manikins and Emocards (for a summary, see

Stickel et al. 2011). It is even more demanding to measure the social aspect of

UX, which has hitherto been defined as highly individual and contextualized (Law

et al. 2009).

A Multidimensional Evaluation Framework for Personal Learning Environments 59



Organizational Aspect

With their capability for personalization and plasticity, PLEs help create a rich and

diverse learning technology ecosystem promising perpetual change and innovation.

The uptake and effects of PLEs at an organizational level can be understood in the

light of theory of Diffusion of Innovation, which is advanced by Rogers (1995):

“An innovation is an idea, practice, or object that is perceived as new by an

individual or other unit of adoption” (p.11).

Furthermore, Rogers (1995) states that the “innovation diffusion process” pro-

gresses over time through five stages: knowledge (when adopters learn about the

innovation), persuasion (when they are persuaded of the value of the innovation),

decision (when they decide to adopt it), implementation (when the innovation is put
into operation), and confirmation (when the decision is reaffirmed or rejected).

The ROLE project conducted a study to identify factors that can have an effect

on the adoption and diffusion of PLE-related technologies in organizations (Chat-

terjee et al. 2013). Table 2 presents an overview of the factors identified.

Among the main organizational factors, the outlook of the top management on

introducing technological change matters, as this particularly influences persuasion

strategies for facilitating positive decision-making in terms of PLE adoption. It is

equally important to look at how coherent or unified the views on PLEs of the key

stakeholders within the organization are. With the increasing popularity of social

media within commercial organizations, extensive use of such platforms can have

positive impacts on informing the stakeholders about key concepts and issues

around PLEs.

The top management, as per the findings of the study, is particularly interested in

the cost-effectiveness PLEs offer as compared to existing solutions in place—the

perceived cost-effectiveness thus plays a key role here for evaluation. Compatibil-

ity with the existing technical infrastructure and high learnability are other key

success factors of introducing innovation. These persuasive factors tend to act in a

push–pull mechanism (Shih 2006) before embarking on the decision-making stage.

Table 2 Potential factors influencing organizational uptake

Categories Factors

Organizational Leaderships attitude towards change

Strategic alignment

Learning culture

IT support

Innovation (PLE) Perceived cost-effectiveness

Compatibility with existing system

Perceived effort expectancy

External factors Perceived factuality

Communication channels and influence Line manager

Social networks
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Once the key stakeholders within an organization are informed and persuaded about

the usefulness and utility of PLEs within their organization, the top management

may then take the two key factors into account when deciding upon the adoption of

the new learning technologies.

PLEs enable the learners to take control of their own learning depending on their

contextual needs and goals. It is therefore crucial to check whether a framework

exists that allows relating personal goals directly to organizational goals. Similarly,

the learning culture should not be dominated by didactic and trainer-facilitated

approaches, as a healthy sign of PLE adoption is that learners take control of their

own learning and managing the related technologies. It is necessary to look at the

provision of IT support (particularly in the introduction phase), when stakeholders

start using PLEs within their day-to-day activities. Another important factor that

determines the PLE adoption is its use by line managers. If line managers and senior

team do not lead by example, then the likelihood of PLE adoption can be adversely

affected.

Psycho-pedagogical Aspect

From the psychological and pedagogical perspective, the key aspects to look at are

the ability to foster self-regulated learning, the guidance and recommendation

strategy, and the facilities for reflection and monitoring. Moreover, the availability

and documentation of an activity and skill model play an important role—and how

far this is put into practice.

Self-regulated Learning

From the psycho-pedagogical perspective, effective exploitation of PLEs, which

support lifelong learning, hinges crucially upon the learner’s self-regulated learning

competence. The quality of learning outcomes varies with the extent to which

learners are capable of regulating their own learning (Steffens 2006). Self-regulated

learning approaches have been evolving since the 1970s in educational research and

practice (Efklides 2009).

Successful deployment of PLEs relies on a self-regulated learning process model

such as the following one (derived from Zimmerman 2002), where it is seen as a

learner-centric cyclic model consisting of four recurring learning phases: learner

profile information is defined or revised; learner finds and selects learning

resources; learner works on selected learning resources; and learner reflects and

reacts on strategies, achievements, and usefulness.

Note that while cognitive learning activities are rather related to actual learning

(i.e., information receiving, debating, and experimenting), meta-cognitive learning

activities are related to controlling and reflecting on one’s own learning.
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With respect to the evaluation of the success and extent of self-regulated

learning, gathering data about the accuracy and usefulness of the learning process

model is crucial. It is particularly relevant to find out, whether learners can actually

follow the process model and whether they comprehend it and its implications.

Another key question is, whether the process model supports the development of

self-regulatory skills.

It should be taken into account that the process model can be applied in different

contexts and situations. For example, learners might be in a collaborative learning

situation, where they may learn together with peers. Or they may learn on their own.

In addition, the actual learning technology mix may make a difference, since

learners might use tools and widgets explicitly built to support self-regulated

learning, whereas in other cases, performance of meta-cognitive learning activities

may happen just in an implicit way (i.e., being aware of them).

One particularly useful instrument to help in the evaluation of self-directed

learning is the questionnaire. While it certainly is supportive of all other aspects

mentioned above and following below, this widely used instrument can help here in

providing structured, often numerical data. Questionnaires can be administered

without the presence of the researcher, and are often comparatively straightforward

to analyze (Wilson and McLean 1994). According to Cohen et al (2000), “Though

there is a large range of questionnaires that one can use, but there is a simple rule of

thumb to follow: the larger the size of the sample, the more structured, closed and

numerical the questionnaire may have to be, and the smaller the size of the sample,

the less structured, more open and word based the questionnaire may be” (p. 247).

Questionnaires are particularly useful when comparison across groups is required

(Oppenheim 1992).

Guidance and Recommendation Strategies

Guidance for learning in the context of PLEs depends on the situation and on who is

providing the guidance. Learners can learn in a blended learning situation with

teachers structuring the learning process. Peers can be involved in the learning

process, if learners collaborate in some way. Learners can also learn on their own

without human interaction. In the first case, teachers can provide guidance. In the

second case, peers can provide guidance either directly or indirectly (e.g., with

peers attempting to master a problem together). In all cases, guidance can also be

provided by the system through personalized recommendations.

Moreover, the scope of guidance can focus on a variety of things, including the

search for learning resources (e.g., widgets, content, or peers), the composition of a

PLE, the control over the learning process, and the improvement of self-regulation

ability. Evaluating the effectiveness and appropriateness of such guidance strate-

gies requires looking into its preconditions: the given abilities of learners are

relevant, since it depends largely on concrete skills of learners, what they can do

on their own and where they need help.
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Furthermore, goals and preferences need to be investigated because the scope of

guidance depends on these factors. It should be noted that it depends on who is

delivering guidance, whether certain preconditions can be taken into account, and

to which extent. If the system provides guidance, then this is done usually in terms

of recommendations. Personalized recommendations are based on a learner model

(e.g., goals, skills, learning history, learning progress, background of a learner, and

the learner’s preferred instructional technique), which models the preconditions for

guidance.

The scope of recommendations can include concrete widgets, content resources,

peers, learning activities, and complete learning environments (i.e., sets of learning

resources). By recommending certain meta-cognitive learning activities, guidance

for self-regulated learning can be provided. In case of teacher guidance, learning

environments can be pre-configured. Especially in a blended learning situation,

teachers can support the use of the learning environment and help improve self-

regulated learning, providing further scaffolds to system guidance.

Regarding evaluation, it is important to assess the appropriateness and quality of

guidance strategies. This includes evaluating, whether the respective guidance

strategy helps learning effectively and whether the guidance provided helps over-

come difficulties. Different guidance strategies have different purposes: it requires

an evaluation of whether all purposes are actually achieved.

While of course the questionnaire (see above) can be utilized to evaluate the

success of particular guidance and recommendation facilities in their context, other

qualitative methods are suitable as well—such as focus groups, the nominal group

technique, and a Delphi study. Quasi-experiments using test collections and statis-

tical measurements are the dominant quantitative methods.

A focus group is a small group of people who get together to discuss a certain

issue given to them normally by a researcher. It usually consists of 6–10 members

and meets regularly during the lifetime of a project or in an ad hoc manner when a

need arises (Vaughan et al 1996). The technique relies on interactions among group

members. Focus groups are used to capture qualitative feedback to triangulate

findings from some other data sources.

Two other techniques, namely Nominal Group technique and Delphi technique

may be used to collect group opinion. The Nominal Group Technique was devel-

oped by Delbecq and Van de Van (1971, 1975) in the 1970s. It has been found to be

useful in improving educational programs (Jones and Hunter 1995). There is further

evidence in the literature that it was successfully used for evaluation purposes in

higher education (Nisbet and Watt 1984). Grant et al. (2003) used the technique to

determine the impact of student journals in postgraduate education.

The Delphi technique (Turoff 1970) is, like the Nominal Group technique, a

structured process, but it does not require physical proximity among participants.

The participants may be geographically dispersed and are not required to meet face

to face. Either technique may be instantiated after validation trials to gather group

data, augmenting and triangulating the monitoring or survey data.

Following the tradition of search engine evaluation, the relevance of recommen-

dations can be evaluated in the so-called quasi-experiment with the help of a
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specially prepared test collection. In such a case, the learning resources (e.g.,

content, peers) are evaluated by experts or representative users; this allows com-

paring how well the recommender system performs in bringing up the most relevant

and most complete recommendation. Evaluation measures depend on the guidance

strategy: for example, recommendations fostering serendipity have much more

relaxed requirements on accuracy as compared to identifying potential peers who

are currently in a similar learning situation. An overview on possible evaluation

measures (and their application contexts) can be found in Herlocker et al. (2004).

Reflection and Monitoring

Learner information is important for guidance strategies; this can be the assessment

of a teacher, peers, or the learner herself. A teacher and peers might form an opinion

by observing, the learner can do this by self-monitoring or self-reflection, and the

system can do that by tracking the learner’s behavior and building a learner profile

(or recommending profile information). Most importantly, a mixed procedure can

be used if profile information is proposed by the system and the learner has to

modify and update it. In this case the learner is made aware of certain assessment

outcomes, which also stimulates self-reflection. As already mentioned above,

learner profile may contain information about goals, skills, learning progress, etc.

Evaluation should focus on the accuracy of this information.

While an interview can be used for the evaluation of many of the other aspects

listed above and below, it is particularly useful for the evaluation of reflection and

monitoring. An interview is a purposeful discussion between two or more people

(Kahn and Cannel 1957). One of the most distinct advantages of interview over, for

instance, questionnaires is that the researcher has personal contact with the respon-

dent and hence more control over the questions and its context. The researcher is

available to clarify confusing questions (Cohen et al 2000), which is difficult to do

with questionnaires. This same advantage, however, can also turn into a disadvan-

tage, when the researcher knowingly or unknowingly diverts the discussion and

when allowing personal bias to directly impact on outcomes. Interviews consist of a

more direct method that helps easily spot user preferences, satisfaction, and

encountered problems.

Apart from qualitative approaches, quantitative evaluation techniques utilizing

content analysis over learners’ writings are emerging, some of which using auto-

mation techniques from text mining and statistical processing. Ullmann

et al. (2013) provide an overview and a framework for the study of reflection by

hand and with the help of automation techniques; from natural language processing

as well as using crowd-sourcing of human coding on platforms such as

CrowdFlower or Amazon’s Mechanical Turk.
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Activity and Skill Model

For successful deployment of PLEs, the underlying skill model is typically com-

plex, since in addition to the developed domain knowledge, self-regulated learning

and the handling of PLE services and tools have to be considered. Any PLE skill

model encompasses at least these three different kinds of skills: domain, tool, and

self-regulation skills:

– Domain skills are skills that a learner possesses, if he or she has a certain level of

expertise in a knowledge domain. For instance, the learner can explain what

percentages she estimates to have attained and, if she prefers, justifies with some

qualitative comments.

– Tool skills are defined as skills which a learner possesses, if she is able to

perform a learning activity with a learning tool in a domain context: for example,

the learner can use a tool for setting goals or can use a tool in order to retrieve

domain knowledge in a certain topic. Different learning activities with the same

tool can require different skills.

– Self-regulated learning skills imply the ability of a learner to regulate her

learning activities by herself: the learner can realistically set own goals, monitor

own progress, apply effective time management, and self-evaluate. Self-regu-

lated learning skills are skills on a meta-level and domain independent.

For the evaluation, focus should be set on documenting and subsequently

assessing accuracy and usefulness of these skill models. Methods for the assessment

of accuracy and usefulness are essentially the same as those valid for evaluating the

utility of PLE utility (particularly automated monitoring and CAM).

Social Aspect

A Community of Practice approach is an effective way of sharing knowledge. They

are usually characterized by anonymity and an addictive, but voluntary behavior,

with a strong sense of belonging (Hampton and Wellman 2001). Trust, loyalty, and

social usefulness are pertinent motivational features identified in the virtual com-

munity context.

Over the last century, a number of motivational theories were proposed (e.g.,

Maslow 1954; Herzberg 1987; Vroom 1964). At the foundation of these theories, it

is claimed, lies the suggestion that each school of thought focuses on certain factors

to the exclusion of all others—for example, reward, social needs, or psychological

growth.

A few key inferences in the context of PLEs from the motivational models are

mentioned below:

– Recognition of a range of individual needs: Learners have varying levels of

motivation depending on their needs.
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– Goal alignment in the provision of materials: If a given task does not align with

the learner’s goal, then the motivation to complete the task will obviously

decrease.

– Varying incentives: Incentives can help instill a sense of achievement and

motivation to keep going. Learners will require varying levels of incentives of

different natures to keep themselves motivated (grades, peer recognition, altru-

ism, to mention just a few).

– Connectedness to community performance: Link of these incentives to perfor-

mance at an organizational or community level.

To assess the social aspect of PLEs, Kim’s (2000) application of Maslow’s

Hierarchy of Needs to online communities can be further adapted: Table 3

Table 3 Community building and motivation (extended from Kim 2000)

Need

Offline

(Maslow)

Online communities (Kim

2000)

Personal Learning

Environment

Physiological Food System access Access to PLE

technology, widget store,

user profile

Clothing Ability to maintain own identity

while participating in the

community

Use of templates for

assembly of environmentShelter

health

Security and

safety

Protection from

crimes and war

Protection from hacking and

personal attacks

Data security (automated

monitoring data) and

encryption

Sense of living

in a fair society

level playing field multi-level privacy

frameworkmaintain varying level of

privacy

Social Give and

receive love

Belonging to the community as

whole and within subgroups

Share and consume tools,

content, and resources

Feeling of

belongingness

Belongingness

Ability to collaborate

across several social

networks

Self-esteem Self-respect Contribute to community and

get recognized

Sharing modified PLE

templates

Ability to earn

respect from

others

Altruism

Mentoring

Giving and receiving

feedback

Rating and ranking

Self-

actualization

Develop skills

and fulfill one’s

potential

Take on community role that

develops new skills and opens

new opportunities

Acquiring expert status

within the community

Assembly and regulation

of own learning
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illustrates which constructs are relevant to the PLE evaluation from a motivational

perspective.

Clustering techniques and social network analysis (SNA) can be used to trace

whether the infrastructure supports the emergence and evolution of self-directed

communities of interest and practice (Wenger 1998). Both rely on either implicit

factors (looking at interaction and usage patterns) or explicit ones (utilizing eval-

uation metadata).

SNA originates from sociology and network analysis that is widely applied in

physics, electrical science, civil engineering, and others. In SNA, entities and

relations among them are mathematically modeled as graphs, (i.e., sets of nodes

and edges connecting them). Nodes and edges can have different semantics: for

instance, nodes can be people and edges between nodes can be based on commu-

nication between people, for example, through e-mails or chats. Edges can also be

used to denote citations of resources that peers own or create. For instance, a peer is

connected with the other one whose work he has cited. According to the Actor

Network Theory (Latour 1991), we can consider every node as an arbitrary actor,

which is not necessarily human. In this sense, it is also possible to analyze networks

consisting of users and tools, both modeled as nodes.

SNA is a basis for assessing social learning and the interaction with tools used in

learning (Klamma 2010). It helps discover information about social relationships.

Based on this, it allows inspecting social presence of learners within their commu-

nities: for example, it helps in evaluating which roles learners adopt or how their

positions evolve over time, positively as well as negatively.

Since 1967 with the discovery of the small world network phenomenon (Milgram

1967), the heterogeneity of networks has been examined intensively. Newman (2003)

showed that in scale-free networks, connections between nodes are distributed

unequally with a certain probability. While most of the nodes have few connections,

there exist a few nodes exhibiting a large number of connections. The connectivity of a

graph representing a network informs about robustness and cohesiveness of the

network (Brandes and Erlebach 2005). Freeman (1979) also pays attention to centrality

measures that help us to reveal special roles of network nodes. Moreover, brokerage

phenomena can hardly be defined without the application of SNA (Barabási 2007).

Considering the irregularity of peer connections of networks, Newman and Girvan

(2004) developed one of the clustering algorithms, which find groups of network nodes

that are densely connected to each other but sparsely connected with other nodes.

Networks typically consist of several groups of learners communicating with

each other and with other groups. SNA techniques and clustering allow unveiling

the structure underlying such a network. For example, networks can include groups

of learners that have connections only to leaders of groups, but don’t have com-

munications with other groups.

SNA techniques allow following behaviors of learners within a time frame by

examining network centrality measures, which reveal expertise or presence of a

learner within a network. This method of evaluation may show us how learners

evolve in their communities over time: do they become experts or brokers of

information from one to the other community or do they lose their position and

lock themselves in a community closed from communication?
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In practice, SNA requires the availability of data containing information on the

nodes, i.e., people, groups of people or even tools, and on the edges, i.e., relations

between nodes. One possible source of input for SNA can be the raw monitoring

data. Here, different kinds of interaction between users are captured.

The Unified PLE Evaluation Framework

Based on the TOPS model and the background literature reviewed above, we

propose an integrated evaluation framework for PLEs. Specifically, the framework

incorporates major dimensions with a gradual progression from the individual to

community focus. Figure 2 lists the key dimensions (and its aspects) of this

evaluation framework and shows how they relate to each other: the framework is

organized in three circles from the inner Technological one, which lays the cornerstone

of PLEs, through the middle Psycho-pedagogical circle, which addresses individual

user’s needs and goals, to the outer Organizational and Social circle, which brings in

the social and organizational factors relevant to the exploitation of PLEs.

The constructs highlighted within the three circles are high-level concepts,

which should be translated into low-level variables, selected from the review

brought forward in the previous sections. Operationalizing and estimating such

variables with particular techniques and tools leads to results, which can somehow

and somewhat account for the extent to which PLEs successfully enable users to

attain their learning goals. For instance, the construct usability is translated into two

Fig. 2 The “TOPS”

integrated evaluation

framework for PLEs
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metrics—effectiveness and efficiency—which can be measured in terms of number

and type of errors and in the time to complete a specific task with a PLE.

Nonetheless, not every construct can be operationalized in a straightforward

manner. Indeed, it is a challenging task to develop structural and measurement

models, where factors and measures are orthogonal in the ideal case, but at least

exhibit a lowest degree of collinearity. Statistical analysis techniques such as

correlation, regression, and factor analysis deem useful to sample, validate, and

tune the underlying model in early evaluation runs in order to maximize validity

throughout the overall process.

Table 4 relates these three sets of dimensions (with their main criteria) to the

methods reviewed in the previous sections. Each of the dimensions (technological,

psycho-pedagogical, and organizational/social) can be broken down into its main

groups of constructs, as listed in the first column. The second column provides the

selection of methods that have been used in the past and that we deem most

appropriate for their study.

Table 4 Evaluation dimensions and recommended methods

Dimension

Group of

constructs Key methods

Technological Openness Questionnaires

Responsiveness Interviews (incl. storytelling)

Security Desk research (documentation)

Scalability Nominal group, Delphi

Documentation Inspection methods

Interoperability User tests

Accessibility Monitoring data (incl. web analytics, CAM)

Availability,

reliability

Observation

Quality (content

and UI)

Unit tests

Effectiveness user-based evaluation: behavioral measures, observa-

tions, and questionnairesEfficiency,

satisfaction

Enjoyment

Organizational/
Social

Trust Questionnaires

Social usefulness Interviews

New connections Desk research

Sharing Monitoring data

Privacy Social network analysis

Clustering

Psycho-
pedagogical

Meta-cognitive Questionnaires

Motivation Interviews

Behavioral Nominal group, Delphi, focus group

Recommendations Monitoring data

Observation

Quasi-experiments (relevance accuracy)
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The PLE evaluation is ideally conducted in cycles of planning, actual evaluation,

and reflection on results. A useful vehicle for this can be found in form of case

studies and—concluding the final cycle—a cross-case analysis. Case study is a

generic term for the investigation of an individual group or a phenomenon (Bogdan

and Biklen 2006). Case studies are often used for exploratory research, but the

technique can be varied and adapted to include the multi-method mix proposed

above for the unified PLE evaluation framework.

While the techniques used may vary, the distinguishing feature of case study is

the assumption that human systems develop a characteristic wholeness or integrity

and are not simply a loose collection of traits. This approach enables researchers to

investigate a given phenomenon to a much greater depth, bringing out the interde-

pendencies of parts and emerging patterns. Besides, case study has the potential to

accommodate the value context of the enquiry, is flexible to accommodate unan-

ticipated events, does not attempt to generalize, and admit the problems of

researcher bias in various ways (Nisbet and Watt 1984). Nonetheless, the inability

to accommodate re-observation is a major cause of concern.

The final cycle of the cyclic evaluation process depicted above in Fig. 3 can then

be concluded with the cross-case analysis. A cross-case analysis is “a qualitative,

inductive, multi-case study that seeks to build abstractions across cases” (Merriam

1998, p.195). It is used to identify and compare patterns of similarities and

differences across individual cases resulting in meaningful connections. Most

importantly it empowers all stakeholders to access new knowledge from a rich

holistic point of view (Khan and van Wynsberghe 2008).

There are two well-known techniques to carry out cross-case analysis, namely,

variable- and case-oriented approaches (Ragin 2004). There are other techniques as

Fig. 3 Evaluation cycle for PLEs
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well but are generally derived from the aforementioned ones. The variable-oriented

technique focuses on comparison of identified variables across cases in order to

delineate causal relationships. The case-oriented approach enables researchers to

make sense of causal similarities between different cases by comparing them using

visualization techniques such as stacking cases (Miles and Huberman 1994),

thereby enabling the identification of new social phenomenon.

There are a number of ways in which case-oriented cross-case analysis could be

carried out, namely, most different design (Przeworski and Teune 1982), typolo-

gies, multi-case methods (Smith 2004), and process tracing (George and Bennett

2005). The first two are of particular interest for PLE. The aim for adopting cross-

case analysis for studying the implementation of PLEs across settings is to identify

similarities in a diverse set of cases, which is what most different design offers.

Additionally clustering of cases might also be relevant to identify and compare

patterns and process pathways to seek typological regularity. We recommend the

adoption of an iterative case study design with multi-method data collection to

triangulate empirical findings. Cross-case analysis should be performed towards the

end of a series of evaluations to obtain a holistic view on the outcomes of deploying

PLEs (cf. Fig. 3).

General Discussion: Qualitative Versus Quantitative

In the foregoing sections we present an array of quantitative and qualitative

methods for data collection and analysis. The selection of a particular type of

method depends on individual researchers’ assumptions, values, and expertise.

Some researchers defy the value of quantitative data with the argument that

numbers cannot tell us anything, insisting on capturing solely qualitative data. Any

method fundamentalism is wrong, not least in the light of a postulate for a wide

repertoire of research skills among researchers. Still such standpoint is often found

in practice, particularly by those critics instigating methodological discussions with

the aim to dismantle or even discredit a particular piece of quantitative work they do

not agree with.

It is in our opinion, however, not that simple: Methods cannot be differentiated

into good and bad, and if a particular method fails to provide results (or even more

often: results beyond tautologies), then this probably says more about their com-

petent handling, rather than their validity or reliability. Exceptions prove the rule, of

course.

In our view, there are two aspects to consider that influence methodological

choices. First, it all depends on why the evaluation is needed, what the goal of the
evaluation is, and who the recipient of the evaluation data is. For example, if the

target is to feed back into psycho-pedagogical or technological development,

qualitative means can provide deeper insights on what has gone wrong, what

works, and what leaves room for improvement. Moreover, qualitative methods

bear the potential to discover, why this is the case.
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Furthermore, which approach to adopt depends on the phase of a research study.
Qualitative approaches are particularly useful for exploring a topic and its phenom-

ena in their context. They help in forming hypotheses and build understanding.

Once such understanding is reached, however, more targeted questions can be

posed. Also, if a phenomenon or an application is potentially relevant to a larger

number of people, then it is well justified to conduct a quantitative follow-up to see

if the qualitative findings, suspected dependencies, effects, and other observations

hold when scaling out. Qualitative methods do not scale very well, which can pose a

problem when the target is to, for instance, to assess the effects of an intervention on

a full university, an entire company, or the general population.

This chapter aims to support researchers in determining which method they

need, depending on purpose (“TOPS”) and phase (from case-to-case to cross-case).

It provides a rich repertoire of different methods for the multi-method, multi-

perspective mix, and it helps in combining the strength of different approaches

into a unified evaluation.

As can be seen from the review of the methodological state of the art, the

frontiers in technology-enhanced learning are much more complex than the mere

differentiation of quantitative and qualitative suggests: “mediated” observation

using monitoring data, pictogram-based methods for affect measurement, quasi-

experiments for relevance evaluation, and the like start blurring these boundaries

and start claiming their own place in the standard canon of methods.

It is worth mentioning one class of methods listed in the chapter in particular, as

it stands out through the paucity of research in the area of PLEs: While emotions

and affects can play a critical role in influencing a learner’s motivation to engage in

technology-enhanced learning activities, this experiential aspect tends to be not

only overlooked, but also under-researched.

At the turn of millennium, the psychological research on emotions has been

rekindled, thanks to the work of psychologists such as Klaus Scherer (2005;

“emotion wheel”) and James A. Russell (2003“core affect”). Coincidentally, this

resurgence of interest in emotions and affects has resonated with the shift of

emphasis in HCI around the same time, moving from cognitivist-behavioral per-

formance-based usability to phenomenological-reflective experience-oriented user

experience (UX) (Law et al. 2009) .

Alongside with this change of emphasis is the revived tension about the relative

importance of qualitative and quantitative methods. This issue is actually an

age-old debate in the realm of measurement theory. In brevity, some UX

researchers argue that experience is holistic and cannot be reduced into components

to be measured; any attempt to put down a number to infer the type or intensity of an

emotion is methodologically flawed and inherently meaningless. In contrast, some

other UX researchers believe that the process of experiencing/experienced emo-

tions can be modeled like cognitive processes and thus they are measurable. These

arguments have significant implications to the selection of evaluation methods for

assessing the impact of interacting with technologies (Law et al. 2014).

Above all, putting aside the issue about the quantifiability of user experience, the

main point we want to stress is the high relevance of emotions and affects to the
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design and evaluation of learning environments. Both positive (e.g., fun, pleasure,

engaged, liberating) and negative (e.g., anxious, defeated, frustrated, fear) emotions

can substantially shape the effectiveness of any type of learning situations, includ-

ing PLEs. Consequently, due attention should be heeded to this overlooked expe-

riential aspect.

Conclusion and Future Work

Developing an evaluation framework for PLEs is challenging, since technological,

organizational, psycho-pedagogical and social aspects need to be considered in an

integrated manner and with a diverse set of stakeholder perspectives being taken

into account.

Our attempt was to propose a unified framework encompassing the main valid

constructs (derived from relevant theoretical models), yet at the same time provid-

ing a flexible and adaptive methodology that is capable of accommodating the

changes that are inevitable in an emerging field.

In order to achieve this, we have elaborated an integrated framework that is by

nature case study based and follows a multi-method approach. Furthermore, we

recommended concluding the cyclic evaluation with a cross-case analysis in order

to consolidate data from different contexts so as to establish a holistic view.

A number of metrics and possible methods have been identified and located in

the proposed unified framework. The metrics, criteria, methods, techniques, and

tools proposed are subjected to further refinement and improvement. A process

model ensures the possibility to do so in a well-defined manner.

Obviously, more research efforts are called for to investigate the complex

phenomenon of PLE—and this contribution provides the methodological basis on

which such future endeavors can be built.
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