4 research outputs found

    Serological Evaluation of Mycobacterium ulcerans Antigens Identified by Comparative Genomics

    Get PDF
    A specific and sensitive serodiagnostic test for Mycobacterium ulcerans infection would greatly assist the diagnosis of Buruli ulcer and would also facilitate seroepidemiological surveys. By comparative genomics, we identified 45 potential M. ulcerans specific proteins, of which we were able to express and purify 33 in E. coli. Sera from 30 confirmed Buruli ulcer patients, 24 healthy controls from the same endemic region and 30 healthy controls from a non-endemic region in Benin were screened for antibody responses to these specific proteins by ELISA. Serum IgG responses of Buruli ulcer patients were highly variable, however, seven proteins (MUP045, MUP057, MUL_0513, Hsp65, and the polyketide synthase domains ER, AT propionate, and KR A) showed a significant difference between patient and non-endemic control antibody responses. However, when sera from the healthy control subjects living in the same Buruli ulcer endemic area as the patients were examined, none of the proteins were able to discriminate between these two groups. Nevertheless, six of the seven proteins showed an ability to distinguish people living in an endemic area from those in a non-endemic area with an average sensitivity of 69% and specificity of 88%, suggesting exposure to M. ulcerans. Further validation of these six proteins is now underway to assess their suitability for use in Buruli ulcer seroepidemiological studies. Such studies are urgently needed to assist efforts to uncover environmental reservoirs and understand transmission pathways of the M. ulcerans

    Proteomic profile of culture filtrate from the Brazilian vaccine strain Mycobacterium bovis BCG Moreau compared to M. bovis BCG Pasteur

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacille Calmette-Guerin (BCG) is currently the only available vaccine against tuberculosis (TB) and comprises a heterogeneous family of sub-strains with genotypic and phenotypic differences. The World Health Organization (WHO) affirms that the characterization of BCG sub-strains, both on genomic and proteomic levels, is crucial for a better comprehension of the vaccine. In addition, these studies can contribute in the development of a more efficient vaccine against TB. Here, we combine two-dimensional electrophoresis (2DE) and mass spectrometry to analyse the proteomic profile of culture filtrate proteins (CFPs) from <it>M. bovis </it>BCG Moreau, the Brazilian vaccine strain, comparing it to that of BCG Pasteur. CFPs are considered of great importance given their dominant immunogenicity and role in pathogenesis, being available for interaction with host cells since early infection.</p> <p>Results</p> <p>The 2DE proteomic map of <it>M. bovis </it>BCG Moreau CFPs in the pH range 3 - 8 allowed the identification of 158 spots corresponding to 101 different proteins, identified by MS/MS. Comparison to BCG Pasteur highlights the great similarity between these BCG strains. However, quantitative analysis shows a higher expression of immunogenic proteins such as Rv1860 (BCG1896, Apa), Rv1926c (BCG1965c, Mpb63) and Rv1886c (BCG1923c, Ag85B) in BCG Moreau when compared to BCG Pasteur, while some heat shock proteins, such as Rv0440 (BCG0479, GroEL2) and Rv0350 (BCG0389, DnaK), show the opposite pattern.</p> <p>Conclusions</p> <p>Here we report the detailed 2DE profile of CFPs from <it>M. bovis </it>BCG Moreau and its comparison to BCG Pasteur, identifying differences that may provide relevant information on vaccine efficacy. These findings contribute to the detailed characterization of the Brazilian vaccine strain against TB, revealing aspects that may lead to a better understanding of the factors leading to BCG's variable protective efficacy against TB.</p

    Enhanced Patient Serum Immunoreactivity to Recombinant Mycobacterium tuberculosis CFP32 Produced in the Yeast Pichia pastoris Compared to Escherichia coli and Its Potential for Serodiagnosis of Tuberculosis

    No full text
    CFP32 is a Mycobacterium tuberculosis complex-restricted secreted protein that was previously reported to be present in a majority of sputum samples from patients with active tuberculosis (TB) and to stimulate serum antibody production. CFP32 (originally annotated as Rv0577 and also known as TB27.3) was therefore considered a good candidate target antigen for the rapid serodiagnosis of TB. However, the maximal sensitivity of CFP32 serorecognition may have been limited in earlier studies because recombinant CFP32 (rCFP32) produced in Escherichia coli was used as the test antibody-capture antigen, a potential shortcoming stemming from differences in bacterial protein posttranslational modifications. To further investigate the serodiagnostic potential of rCFP32 synthesized in different heterologous hosts, we expressed rCFP32 in the yeast Pichia pastoris. Compared to E. coli rCFP32, yeast rCFP32 showed a higher capacity to capture polyclonal antisera in Western blot studies. Likewise, yeast rCFP32 was significantly better recognized by the sera from TB patients and healthy Mycobacterium bovis bacillus Calmette-Guérin (BCG)-vaccinated individuals, by enzyme-linked immunosorbent assay (ELISA), than E. coli rCFP32. In subsequent testing, the yeast rCFP32-based antibody-capture ELISA had a sensitivity of 85% and a specificity of 98% for the discrimination of active TB cases (n = 40) from BCG vaccinees (n = 39). The sensitivity was surprisingly high for a single-antigen TB serodiagnostic test compared to tests using E. coli-expressed antigens. Overall, the trans-production of rCFP32 in P. pastoris significantly improved the serologic detection of CFP32-specific antibodies in patient sera, thereby offering a new, possibly better, modality for producing antigens of diagnostic potential for use in the development of immunoassays for both TB and other infectious diseases
    corecore