9,437 research outputs found

    Cellular Automata Based Image Authentication Scheme Using Extended Visual Cryptography

    Get PDF
    Most of the Visual Cryptography based image authentication schemes hide the share and authentication data into cover images by using an additional data hiding process. This process increases the computational cost of the schemes. Pixel expansion, meaningless shares and use of codebook are other challenges in these schemes. To overcome these issues, an authentication scheme is proposed in which no embedding into the cover images is performed and meaningful authentication shares are created using the watermark and cover images. This makes the scheme completely imperceptible. The watermark can be retrieved just by superimposing these authentication shares, thus reducing the computational complexity at receiver's side. Cellular Automata is used to construct the master share that provides self-construction ability to the shares. The meaningful authentication shares help in enhancing the security of the scheme while size invariance saves transmission and storage cost. The scheme possesses the ability of tamper detection. Experimental results demonstrate the improved security and quality of the generated shares of the proposed scheme as compared to existing schemes

    Biometric iris templates security based on secret image sharing and chaotic maps

    Get PDF
    Biometric technique includes of uniquely identifying person based on their physical or behavioural characteristics. It is mainly used for authentication. Storing the template in the database is not a safe approach, because it can be stolen or be tampered with. Due to its importance the template needs to be protected. To treat this safety issue, the suggested system employed a method for securely storing the iris template in the database which is a merging approach for secret image sharing and hiding to enhance security and protect the privacy by decomposing the template into two independent host (public) iris images. The original template can be reconstructed only when both host images are available. Either host image does not expose the identity of the original biometric image. The security and privacy in biometrics-based authentication system is augmented by storing the data in the form of shadows at separated places instead of whole data at one. The proposed biometric recognition system includes iris segmentation algorithms, feature extraction algorithms, a (2, 2) secret sharing and hiding. The experimental results are conducted on standard colour UBIRIS v1 data set. The results indicate that the biometric template protection methods are capable of offering a solution for vulnerability that threatens the biometric template

    Visual secret sharing and related Works -A Review

    Get PDF
    The accelerated development of network technology and internet applications has increased the significance of protecting digital data and images from unauthorized access and manipulation. The secret image-sharing network (SIS) is a crucial technique used to protect private digital photos from illegal editing and copying. SIS can be classified into two types: single-secret sharing (SSS) and multi-secret sharing (MSS). In SSS, a single secret image is divided into multiple shares, while in MSS, multiple secret images are divided into multiple shares. Both SSS and MSS ensure that the original secret images cannot be reconstructed without the correct combination of shares. Therefore, several secret image-sharing methods have been developed depending on these two methods for example visual cryptography, steganography, discrete wavelet transform, watermarking, and threshold. All of these techniques are capable of randomly dividing the secret image into a large number of shares, each of which cannot provide any information to the intrusion team.  This study examined various visual secret-sharing schemes as unique examples of participant secret-sharing methods. Several structures that generalize and enhance VSS were also discussed in this study on covert image-sharing protocols and also this research also gives a comparative analysis of several methods based on various attributes in order to better concentrate on the future directions of the secret image. Generally speaking, the image quality generated employing developed methodologies is preferable to the image quality achieved through using the traditional visual secret-sharing methodology

    Embedded Extended Visual Cryptography Schemes

    Get PDF
    Visual cryptography scheme (VCS) is a kind of secret sharing scheme which allows the encoding of a secret image into n shares that distributed to n participants. The beauty of such scheme is that a set of qualified participants is able to recover the secret image without any cryptographic knowledge and computation devices. Extended visual cryptography scheme (EVCS) is a kind of VCS which consists of meaningful shares (compared to the random shares of traditional VCS). In this paper, we propose a construction of EVCS which is realized by embedding random shares into meaningful covering shares, and we call it the embedded extended visual cryptography scheme (embedded EVCS). Experimental results compare some of the well-known EVCS\u27s proposed in recent years systematically, and show that the proposed embedded EVCS has competitive visual quality compared with many of the well-known EVCS\u27s in the literature. Besides, it has many specific advantages against these well-known EVCS\u27s respectively

    Embedded Extended Visual Cryptography Schemes

    Full text link

    Reversible Data Hiding using Visual Cryptography: A Review

    Get PDF
    ABSTRACT: Data security and data integrity are the two challenging areas for research. There are so many research is progressing on the field like internet security, steganography, cryptography. Data hiding are a group of techniques used to put a secure data in a host media with small deterioration in host and the means to extract the secure data afterwards. Reversible data hiding is a technique to embed additional message into some distortion-unacceptable cover media, such as military or medical images, with a reversible manner so that the original cover content can be perfectly restored after extraction of the hidden message. The reversibility means not only embedding data but also original image can be precisely recovered in the extracting stage. Most hiding techniques perform data embedding by altering the contents of a host media. These types of data hiding techniques are thus irreversible. However in a number of domains such as military, legal and medical imaging although some embedding distortion is admissible, permanent loss of signal fidelity is undesirable. This highlights the need for Reversible (Lossless) data embedding techniques. This paper gives a review on various reversible data hiding techniques and also proposes a novel approach for reversible data hiding using visual cryptography. This involves no use of keys thus keeping the computation cost for encryption/decryption low. This scheme applies a method of vacating the room for data prior to the image encryption used to hide the secret data. By reversing the order of encryption and data hiding we overcome the difficulty of finding the room for data from already encrypted image

    A Study on Visually Encrypted Images for Rights Protection and Authentication

    Get PDF
    首都大学東京, 2014-03-25, 博士(工学), 甲第444号首都大学東

    Privacy-preserving information hiding and its applications

    Get PDF
    The phenomenal advances in cloud computing technology have raised concerns about data privacy. Aided by the modern cryptographic techniques such as homomorphic encryption, it has become possible to carry out computations in the encrypted domain and process data without compromising information privacy. In this thesis, we study various classes of privacy-preserving information hiding schemes and their real-world applications for cyber security, cloud computing, Internet of things, etc. Data breach is recognised as one of the most dreadful cyber security threats in which private data is copied, transmitted, viewed, stolen or used by unauthorised parties. Although encryption can obfuscate private information against unauthorised viewing, it may not stop data from illegitimate exportation. Privacy-preserving Information hiding can serve as a potential solution to this issue in such a manner that a permission code is embedded into the encrypted data and can be detected when transmissions occur. Digital watermarking is a technique that has been used for a wide range of intriguing applications such as data authentication and ownership identification. However, some of the algorithms are proprietary intellectual properties and thus the availability to the general public is rather limited. A possible solution is to outsource the task of watermarking to an authorised cloud service provider, that has legitimate right to execute the algorithms as well as high computational capacity. Privacypreserving Information hiding is well suited to this scenario since it is operated in the encrypted domain and hence prevents private data from being collected by the cloud. Internet of things is a promising technology to healthcare industry. A common framework consists of wearable equipments for monitoring the health status of an individual, a local gateway device for aggregating the data, and a cloud server for storing and analysing the data. However, there are risks that an adversary may attempt to eavesdrop the wireless communication, attack the gateway device or even access to the cloud server. Hence, it is desirable to produce and encrypt the data simultaneously and incorporate secret sharing schemes to realise access control. Privacy-preserving secret sharing is a novel research for fulfilling this function. In summary, this thesis presents novel schemes and algorithms, including: • two privacy-preserving reversible information hiding schemes based upon symmetric cryptography using arithmetic of quadratic residues and lexicographic permutations, respectively. • two privacy-preserving reversible information hiding schemes based upon asymmetric cryptography using multiplicative and additive privacy homomorphisms, respectively. • four predictive models for assisting the removal of distortions inflicted by information hiding based respectively upon projection theorem, image gradient, total variation denoising, and Bayesian inference. • three privacy-preserving secret sharing algorithms with different levels of generality
    corecore