5 research outputs found

    Search strategies of Wikipedia readers

    Get PDF
    The quest for information is one of the most common activity of human beings. Despite the the impressive progress of search engines, not to miss the needed piece of information could be still very tough, as well as to acquire specific competences and knowledge by shaping and following the proper learning paths. Indeed, the need to find sensible paths in information networks is one of the biggest challenges of our societies and, to effectively address it, it is important to investigate the strategies adopted by human users to cope with the cognitive bottleneck of finding their way in a growing sea of information. Here we focus on the case of Wikipedia and investigate a recently released dataset about users’ click on the English Wikipedia, namely the English Wikipedia Clickstream. We perform a semantically charged analysis to uncover the general patterns followed by information seekers in the multi-dimensional space of Wikipedia topics/categories. We discover the existence of well defined strategies in which users tend to start from very general, i.e., semantically broad, pages and progressively narrow down the scope of their navigation, while keeping a growing semantic coherence. This is unlike strategies associated to tasks with predefined search goals, namely the case of the Wikispeedia game. In this case users first move from the ‘particular’ to the ‘universal’ before focusing down again to the required target. The clear picture offered here represents a very important stepping stone towards a better design of information networks and recommendation strategies, as well as the construction of radically new learning paths

    Human exploration of complex knowledge spaces

    Get PDF
    Driven by need or curiosity, as humans we constantly act as information seekers. Whenever we work, study, play, we naturally look for information in spaces where pieces of our knowledge and culture are linked through semantic and logic relations. Nowadays, far from being just an abstraction, these information spaces are complex structures widespread and easily accessible via techno-systems: from the whole World Wide Web to the paramount example of Wikipedia. They are all information networks. How we move on these networks and how our learning experience could be made more efficient while exploring them are the key questions investigated in the present thesis. To this end concepts, tools and models from graph theory and complex systems analysis are borrowed to combine empirical observations of real behaviours of users in knowledge spaces with some theoretical findings of cognitive science research. It is investigated how the knowledge space structure can affect its own exploration in learning-type tasks, and how users do typically explore the information networks, when looking for information or following some learning paths. The research approach followed is exploratory and moves along three main lines of research. Enlarging a previous work in algorithmic education, the first contribution focuses on the topological properties of the information network and how they affect the \emph{efficiency} of a simulated learning exploration. To this end a general class of algorithms is introduced that, standing on well-established findings on educational scheduling, captures some of the behaviours of an individual moving in a knowledge space while learning. In exploring this space, learners move along connections, periodically revisiting some concepts, and sometimes jumping on very distant ones. To investigate the effect of networked information structures on the dynamics, both synthetic and real-world graphs are considered, such as subsections of Wikipedia and word-association graphs. The existence is revealed of optimal topological structures for the defined learning dynamics. They feature small-world and scale-free properties with a balance between the number of hubs and of the least connected items. Surprisingly the real-world networks analysed turn out to be close to optimality. To uncover the role of semantic content of the bit of information to be learned in a information-seeking tasks, empirical data on user traffic logs in the Wikipedia system are then considered. From these, and by means of first-order Markov chain models, some users paths over the encyclopaedia can be simulated and treated as proxies for the real paths. They are then analysed in an abstract semantic level, by mapping the individual pages into points of a semantic reduced space. Recurrent patterns along the walks emerge, even more evident when contrasted with paths originated in information-seeking goal oriented games, thus providing some hints about the unconstrained navigation of users while seeking for information. Still, different systems need to be considered to evaluate longer and more constrained and structured learning dynamics. This is the focus of the third line of investigation, in which learning paths are extracted from advances scientific textbooks and treated as they were walks suggested by their authors throughout an underlying knowledge space. Strategies to extract the paths from the textbooks are proposed, and some preliminary results are discussed on their statistical properties. Moreover, by taking advantages of the Wikipedia information network, the Kauffman theory of adjacent possible is formalized in a learning context, thus introducing the adjacent learnable to refer to the part of the knowledge space explorable by the reader as she learns new concepts by following the suggested learning path. Along this perspective, the paths are analysed as particular realizations of the knowledge space explorations, thus allowing to quantitatively contrast different approaches to education

    A Framework for Personalized Content Recommendations to Support Informal Learning in Massively Diverse Information WIKIS

    Get PDF
    Personalization has proved to achieve better learning outcomes by adapting to specific learners’ needs, interests, and/or preferences. Traditionally, most personalized learning software systems focused on formal learning. However, learning personalization is not only desirable for formal learning, it is also required for informal learning, which is self-directed, does not follow a specified curriculum, and does not lead to formal qualifications. Wikis among other informal learning platforms are found to attract an increasing attention for informal learning, especially Wikipedia. The nature of wikis enables learners to freely navigate the learning environment and independently construct knowledge without being forced to follow a predefined learning path in accordance with the constructivist learning theory. Nevertheless, navigation on information wikis suffer from several limitations. To support informal learning on Wikipedia and similar environments, it is important to provide easy and fast access to relevant content. Recommendation systems (RSs) have long been used to effectively provide useful recommendations in different technology enhanced learning (TEL) contexts. However, the massive diversity of unstructured content as well as user base on such information oriented websites poses major challenges when designing recommendation models for similar environments. In addition to these challenges, evaluation of TEL recommender systems for informal learning is rather a challenging activity due to the inherent difficulty in measuring the impact of recommendations on informal learning with the absence of formal assessment and commonly used learning analytics. In this research, a personalized content recommendation framework (PCRF) for information wikis as well as an evaluation framework that can be used to evaluate the impact of personalized content recommendations on informal learning from wikis are proposed. The presented recommendation framework models learners’ interests by continuously extrapolating topical navigation graphs from learners’ free navigation and applying graph structural analysis algorithms to extract interesting topics for individual users. Then, it integrates learners’ interest models with fuzzy thesauri for personalized content recommendations. Our evaluation approach encompasses two main activities. First, the impact of personalized recommendations on informal learning is evaluated by assessing conceptual knowledge in users’ feedback. Second, web analytics data is analyzed to get an insight into users’ progress and focus throughout the test session. Our evaluation revealed that PCRF generates highly relevant recommendations that are adaptive to changes in user’s interest using the HARD model with rank-based mean average precision (MAP@k) scores ranging between 100% and 86.4%. In addition, evaluation of informal learning revealed that users who used Wikipedia with personalized support could achieve higher scores on conceptual knowledge assessment with average score of 14.9 compared to 10.0 for the students who used the encyclopedia without any recommendations. The analysis of web analytics data show that users who used Wikipedia with personalized recommendations visited larger number of relevant pages compared to the control group, 644 vs 226 respectively. In addition, they were also able to make use of a larger number of concepts and were able to make comparisons and state relations between concepts

    Datasets under consideration.

    No full text
    <p>In (A) we illustrate the English Wikipedia Clickstream dataset. The 9 different external sources plus the MainPage are illustrated with the fraction of flux outgoing from them. The paths we considered in our analysis start from one of the 9 sources to randomly walking over the Wikipedia articles accordingly to the transition counts provided by the dataset. (B) Two examples of paths followed by players of the Wikispeedia game, whose task was that of navigating on a reduced version of Wikipedia from a given starting page to a given target one (from <i>House</i> to <i>Electric_Field</i> in the example).</p
    corecore