358 research outputs found

    What makes nonholonomic integrators work?

    Get PDF
    A nonholonomic system is a mechanical system with velocity constraints not originating from position constraints; rolling without slipping is the typical example. A nonholonomic integrator is a numerical method specifically designed for nonholonomic systems. It has been observed numerically that many nonholonomic integrators exhibit excellent long-time behaviour when applied to various test problems. The excellent performance is often attributed to some underlying discrete version of the Lagrange--d'Alembert principle. Instead, in this paper, we give evidence that reversibility is behind the observed behaviour. Indeed, we show that many standard nonholonomic test problems have the structure of being foliated over reversible integrable systems. As most nonholonomic integrators preserve the foliation and the reversible structure, near conservation of the first integrals is a consequence of reversible KAM theory. Therefore, to fully evaluate nonholonomic integrators one has to consider also non-reversible nonholonomic systems. To this end we construct perturbed test problems that are integrable but no longer reversible (with respect to the standard reversibility map). Applying various nonholonomic integrators from the literature to these problems we observe that no method performs well on all problems. This further indicates that reversibility is the main mechanism behind near conservation of first integrals for nonholonomic integrators. A list of relevant open problems is given.Comment: 27 pages, 9 figure

    Momentum and energy preserving integrators for nonholonomic dynamics

    Get PDF
    In this paper, we propose a geometric integrator for nonholonomic mechanical systems. It can be applied to discrete Lagrangian systems specified through a discrete Lagrangian defined on QxQ, where Q is the configuration manifold, and a (generally nonintegrable) distribution in TQ. In the proposed method, a discretization of the constraints is not required. We show that the method preserves the discrete nonholonomic momentum map, and also that the nonholonomic constraints are preserved in average. We study in particular the case where Q has a Lie group structure and the discrete Lagrangian and/or nonholonomic constraints have various invariance properties, and show that the method is also energy-preserving in some important cases.Comment: 18 pages, 6 figures; v2: example and figures added, minor correction to example 2; v3: added section on nonholonomic Stoermer-Verlet metho

    Simulating Nonholonomic Dynamics

    Full text link
    This paper develops different discretization schemes for nonholonomic mechanical systems through a discrete geometric approach. The proposed methods are designed to account for the special geometric structure of the nonholonomic motion. Two different families of nonholonomic integrators are developed and examined numerically: the geometric nonholonomic integrator (GNI) and the reduced d'Alembert-Pontryagin integrator (RDP). As a result, the paper provides a general tool for engineering applications, i.e. for automatic derivation of numerically accurate and stable dynamics integration schemes applicable to a variety of robotic vehicle models

    Symplectic integrators for index one constraints

    Full text link
    We show that symplectic Runge-Kutta methods provide effective symplectic integrators for Hamiltonian systems with index one constraints. These include the Hamiltonian description of variational problems subject to position and velocity constraints nondegenerate in the velocities, such as those arising in sub-Riemannian geometry and control theory.Comment: 13 pages, accepted in SIAM J Sci Compu
    • …
    corecore