521 research outputs found

    Density Controlled Divide-and-Rule Scheme for Energy Efficient Routing in Wireless Sensor Networks

    Full text link
    Cluster based routing technique is most popular routing technique in Wireless Sensor Networks (WSNs). Due to varying need of WSN applications efficient energy utilization in routing protocols is still a potential area of research. In this research work we introduced a new energy efficient cluster based routing technique. In this technique we tried to overcome the problem of coverage hole and energy hole. In our technique we controlled these problems by introducing density controlled uniform distribution of nodes and fixing optimum number of Cluster Heads (CHs) in each round. Finally we verified our technique by experimental results of MATLAB simulations.Comment: 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE2013), Regina, Saskatchewan, Canada, 201

    An Outline of Security in Wireless Sensor Networks: Threats, Countermeasures and Implementations

    Full text link
    With the expansion of wireless sensor networks (WSNs), the need for securing the data flow through these networks is increasing. These sensor networks allow for easy-to-apply and flexible installations which have enabled them to be used for numerous applications. Due to these properties, they face distinct information security threats. Security of the data flowing through across networks provides the researchers with an interesting and intriguing potential for research. Design of these networks to ensure the protection of data faces the constraints of limited power and processing resources. We provide the basics of wireless sensor network security to help the researchers and engineers in better understanding of this applications field. In this chapter, we will provide the basics of information security with special emphasis on WSNs. The chapter will also give an overview of the information security requirements in these networks. Threats to the security of data in WSNs and some of their counter measures are also presented

    A Survey on Various Congestion Control Techniques in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are made up of small battery-powered sensors that can sense and monitor a variety of environmental conditions. These devices are self-contained and fault tolerant. The majority of WSNs are built to perform data collection tasks. These data are gathered and then sent to the sink node. Small packets are sent towards the sink node in such cases, and as a result, the areas near the sink node become congested, becoming the bottleneck of the entire network. In this paper, a survey of existing techniques or methods for detecting and eliminating congestions is conducted. Finally, a comparison in the form of a table based on various matrices is presented

    Security in Wireless Sensor Networks: Issues and Challenges

    Get PDF
    Wireless Sensor Network (WSN) is an emerging technology that shows great promise for various futuristic applications both for mass public and military. The sensing technology combined with processing power and wireless communication makes it lucrative for being exploited in abundance in future. The inclusion of wireless communication technology also incurs various types of security threats. The intent of this paper is to investigate the security related issues and challenges in wireless sensor networks. We identify the security threats, review proposed security mechanisms for wireless sensor networks. We also discuss the holistic view of security for ensuring layered and robust security in wireless sensor networks.Comment: 6 page

    EEGRA: Energy Efficient Geographic Routing Algorithms for Wireless Sensor Network

    Get PDF
    [[abstract]]Energy efficiency is critical in wireless sensor networks (WSN) for system reliability and deployment cost. The power consumption of the communication in multi-hop WSN is primarily decided by three factors: routing distance, signal interference, and computation cost of routing. Several routing algorithms designed for energy efficiency or interference avoidance had been proposed. However, they are either too complex to be useful in practices or specialized for certain WSN architectures. In this paper, we propose two energy efficient geographic routing algorithms (EEGRA) for wireless sensor networks, which are based on existing geographic routing algorithms and take all three factors into account. The first algorithm combines the interference into the routing cost function, and uses it in the routing decision. The second algorithm transforms the problem into a constrained optimization problem, and solves it by searching the optimal discretized interference level. We integrate four geographic routing algorithms: GOAFR+, Face Routing, GPSR, and RandHT, to both EEGRA algorithms and compare them with three other routing methods in terms of power consumption and computation cost for the grid and irregular sensor topologies. The results of our experiments show both algorithms conserve sensor’s routing energy 30% ~ 50% comparing to general geographic routing algorithms. In addition, the time complexity of EEGRA algorithms is similar to the geographic greedy routing methods, which is much faster than the optimal SINR-based algorithm.[[conferencetype]]國際[[conferencedate]]20121213~20121215[[iscallforpapers]]Y[[conferencelocation]]San Marcos, Texas, US

    Real-Time Cross-Layer Routing Protocol for Ad Hoc Wireless Sensor Networks

    Get PDF
    Reliable and energy efficient routing is a critical issue in Wireless Sensor Networks (WSNs) deployments. Many approaches have been proposed for WSN routing, but sensor field implementations, compared to computer simulations and fully-controlled testbeds, tend to be lacking in the literature and not fully documented. Typically, WSNs provide the ability to gather information cheaply, accurately and reliably over both small and vast physical regions. Unlike other large data network forms, where the ultimate input/output interface is a human being, WSNs are about collecting data from unattended physical environments. Although WSNs are being studied on a global scale, the major current research is still focusing on simulations experiments. In particular for sensor networks, which have to deal with very stringent resource limitations and that are exposed to severe physical conditions, real experiments with real applications are essential. In addition, the effectiveness of simulation studies is severely limited in terms of the difficulty in modeling the complexities of the radio environment, power consumption on sensor devices, and the interactions between the physical, network and application layers. The routing problem in ad hoc WSNs is nontrivial issue because of sensor node failures due to restricted recourses. Thus, the routing protocols of WSNs encounter two conflicting issue: on the one hand, in order to optimise routes, frequent topology updates are required, while on the other hand, frequent topology updates result in imbalanced energy dissipation and higher message overhead. In the literature, such as in (Rahul et al., 2002), (Woo et al., 2003), (TinyOS, 2004), (Gnawali et al., 2009) and (Burri et al., 2007) several authors have presented routing algorithms for WSNs that consider purely one or two metrics at most in attempting to optimise routes while attempting to keep small message overhead and balanced energy dissipation. Recent studies on energy efficient routing in multihop WSNs have shown a great reliance on radio link quality in the path selection process. If sensor nodes along the routing path and closer to the base station advertise a high quality link to forwarding upstream packets, these sensor nodes will experience a faster depletion rate in their residual energy. This results in a topological routing hole or network partitioning as stated and resolved in and (Daabaj 2010). This chapter presents an empirical study on how to improve energy efficiency for reliable multihop communication by developing a real-time cross-layer lifetime-oriented routing protocol and integrating useful routing information from different layers to examine their joint benefit on the lifetime of individual sensor nodes and the entire sensor network. The proposed approach aims to balance the workload and energy usage among relay nodes to achieve balanced energy dissipation, thereby maximizing the functional network lifetime. The obtained experimental results are presented from prototype real-network experiments based on Crossbow’s sensor motes (Crossbow, 2010), i.e., Mica2 low-power wireless sensor platforms (Crossbow, 2010). The distributed real-time routing protocol which is proposed In this chapter aims to face the dynamics of the real world sensor networks and also to discover multiple paths between the base station and source sensor nodes. The proposed routing protocol is compared experimentally with a reliability-oriented collection-tree protocol, i.e., the TinyOS MintRoute protocol (Woo et al., 2003). The experimental results show that our proposed protocol has a higher node energy efficiency, lower control overhead, and fair average delay

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Secure Clustering and Routing using Adaptive Decision and Levy Flight based Artificial Hummingbird Algorithm for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) receives huge attention from various remote monitoring applications because of its self configuration, ease of maintenance and scalability features. But, the sensors of the WSNs vulnerable to malicious attackers due to the energy constraint, open deployment and lack of centralized administration. Therefore, the secure routing is established for achieving the secure and reliable data broadcasting in the WSN. In this paper, an Adaptive Decision and Levy Flight based Artificial Hummingbird Algorithm (ADLFAHA) is proposed for performing an effective secure routing under the blackhole and Denial of Service (DoS) attacks. The ADLFAHA is developed to perform Secure Cluster Head (SCH) selection and secure path identification according to the trust, energy, load and communication cost. An adaptive decision strategy and levy flight incorporated in the ADLFAHA is used to enhance exploration and achieves global optimization capacity that helps to enhance the searching process. Moreover, the developed ADLFAHA helps to avoid the congestion among the nodes by balancing the load in network. The ADLFAHA is analyzed using End to End Delay (EED), throughput, Packet Delivery Ratio (PDR) and overhead. The existing researches such as Firebug Optimized Modified Bee Colony (FOMBC) and Lightweight Secure Routing (LSR) are used to compare the ADLFAHA. The PDR of the ADLFAHA for the simulation time of 100 s is 98.21 that is high than the FOMBC and LSR

    TRUST-BASED DEFENSE AGAINST INSIDER PACKET DROP ATTACKS IN WIRELESS SENSOR NETWORKS

    Get PDF
    In most wireless sensor networks (WSNs), sensor nodes generate data packets and send them to the base station (BS) by multi-hop routing paths because of their limited energy and transmission range. The insider packet drop attacks refer to a set of attacks where compromised nodes intentionally drop packets. It is challenging to accurately detect such attacks because packets may also be dropped due to collision, congestion, or other network problems. Trust mechanism is a promising approach to identify inside packet drop attackers. In such an approach, each node will monitor its neighbor's packet forwarding behavior and use this observation to measure the trustworthiness of its neighbors. Once a neighbor's trust value falls below a threshold, it will be considered as an attacker by the monitoring node and excluded from the routing paths so further damage to the network will not be made. In this dissertation, we analyze the limitation of the state-of-the-art trust mechanisms and propose several enhancement techniques to better defend against insider packet drop attacks in WSNs. First, we observe that inside attackers can easily defeat the current trust mechanisms and even if they are caught, normally a lot of damage has already been made to the network. We believe this is caused by current trust models' inefficiency in distinguishing attacking behaviors and normal network transmission failures. We demonstrate that the phenomenon of consecutive packet drops is one fundamental difference between attackers and good sensor nodes and build a hybrid trust model based on it to improve the detection speed and accuracy of current trust models. Second, trust mechanisms give false alarms when they mis-categorize good nodes as attackers. Aggressive mechanisms like our hybrid approach designed to catch attackers as early as possible normally have high false alarm rate. Removing these nodes from routing paths may significantly reduce the performance of the network. We propose a novel false alarm detection and recovery mechanism that can recover the falsely detected good nodes. Next, we show that more intelligent packet drop attackers can launch advanced attacks without being detected by introducing a selective forwarding-based denial-of-service attack that drops only packets from specific victim nodes. We develop effective detection and prevention methods against such attack. We have implemented all the methods we have proposed and conducted extensive simulations with the OPNET network simulator to validate their effectiveness

    Energy sink-holes avoidance method based on fuzzy system in wireless sensor networks

    Get PDF
    The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data latency. Nevertheless, lots of research has been carried out to sort out the energy holes problem using controllable-based sink mobility methods. However, further developments can be demonstrated and achieved on such type of mobility management system. In this paper, a well-rounded strategy involving an energy-efficient routing protocol along with a controllable-based sink mobility method is proposed to extirpate the energy sink-holes problem. This paper fused the fuzzy A-star as a routing protocol for mitigating the energy consumption during data forwarding along with a novel sink mobility method which adopted a grid partitioning system and fuzzy system that takes account of the average residual energy, sensors density, average traffic load, and sources angles to detect the optimal next location of the mobile sink. By utilizing diverse performance metrics, the empirical analysis of our proposed work showed an outstanding result as compared with fuzzy A-star protocol in the case of a static sink
    • …
    corecore