600 research outputs found

    Joint Relay Selection and Power Allocation in Large-Scale MIMO Systems with Untrusted Relays and Passive Eavesdroppers

    Full text link
    In this paper, a joint relay selection and power allocation (JRP) scheme is proposed to enhance the physical layer security of a cooperative network, where a multiple antennas source communicates with a single-antenna destination in presence of untrusted relays and passive eavesdroppers (Eves). The objective is to protect the data confidentially while concurrently relying on the untrusted relays as potential Eves to improve both the security and reliability of the network. To realize this objective, we consider cooperative jamming performed by the destination while JRP scheme is implemented. With the aim of maximizing the instantaneous secrecy rate, we derive a new closed-form solution for the optimal power allocation and propose a simple relay selection criterion under two scenarios of non-colluding Eves (NCE) and colluding Eves (CE). For the proposed scheme, a new closed-form expression is derived for the ergodic secrecy rate (ESR) and the secrecy outage probability as security metrics, and a new closed-form expression is presented for the average symbol error rate (SER) as a reliability measure over Rayleigh fading channels. We further explicitly characterize the high signal-to-noise ratio slope and power offset of the ESR to highlight the impacts of system parameters on the ESR. In addition, we examine the diversity order of the proposed scheme to reveal the achievable secrecy performance advantage. Finally, the secrecy and reliability diversity-multiplexing tradeoff of the optimized network are provided. Numerical results highlight that the ESR performance of the proposed JRP scheme for NCE and CE cases is increased with respect to the number of untrustworthy relays.Comment: 18 pages, 10 figures, IEEE Transactions on Information Forensics and Security (In press

    Secure Two-Way Transmission via Wireless-Powered Untrusted Relay and External Jammer

    Get PDF
    In this paper, we propose a two-way secure communication scheme where two transceivers exchange confidential messages via a wireless powered untrusted amplify-and-forward (AF) relay in the presence of an external jammer. We take into account both friendly jamming (FJ) and Gaussian noise jamming (GNJ) scenarios. Based on the time switching (TS) architecture at the relay, the data transmission is done in three phases. In the first phase, both the energy-starved nodes, the untrustworthy relay and the jammer, are charged by non-information radio frequency (RF) signals from the sources. In the second phase, the two sources send their information signals and concurrently, the jammer transmits artificial noise to confuse the curious relay. Finally, the third phase is dedicated to forward a scaled version of the received signal from the relay to the sources. For the proposed secure transmission schemes, we derive new closed-form lower-bound expressions for the ergodic secrecy sum rate (ESSR) in the high signal-to-noise ratio (SNR) regime. We further analyze the asymptotic ESSR to determine the key parameters; the high SNR slope and the high SNR power offset of the jamming based scenarios. To highlight the performance advantage of the proposed FJ, we also examine the scenario of without jamming (WoJ). Finally, numerical examples and discussions are provided to acquire some engineering insights, and to demonstrate the impacts of different system parameters on the secrecy performance of the considered communication scenarios. The numerical results illustrate that the proposed FJ significantly outperforms the traditional one-way communication and the Constellation rotation approach, as well as our proposed benchmarks, the two-way WoJ and GNJ scenarios.Comment: 14 pages, 6 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Secrecy performance of TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under joint constraint of interference and hardware imperfection

    Get PDF
    In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.Web of Science195art. no. 116

    Assessing the Socio-economic Impacts of Secure Texting and Anti-Jamming Technologies in Non-Cooperative Networks

    Full text link
    Operating securely over 5G (and legacy) infrastructure is a challenge. In non-cooperative networks, malicious actors may try to decipher, block encrypted messages, or specifically jam wireless radio systems. Such activities can disrupt operations, from causing minor inconvenience, through to fully paralyzing the functionality of critical infrastructure. While technological mitigation measures do exist, there are very few methods capable of assessing the socio-economic impacts from different mitigation strategies. This leads to a lack of robust evidence to inform cost-benefit analysis, and thus support decision makers in industry and government. Consequently, this paper presents two open-source simulation models for assessing the socio-economic impacts of operating in untrusted non-cooperative networks. The first focuses on using multiple non-cooperative networks to transmit a message. The second model simulates a case where a message is converted into alternative plain language to avoid detection, separated into different portions and then transmitted over multiple non-cooperative networks. A probabilistic simulation of the two models is performed for a 15 km by 15 km spatial grid with 5 untrusted non-cooperative networks and intercepting agents. The results are used to estimate economic losses for private, commercial, government and military sectors. The highest probabilistic total losses for military applications include US300,US300, US150, and US$75, incurred for a 1, 3 and 5 site multi-transmission approach, respectively, for non-cooperative networks when considering 1,000 texts being sent. These results form a framework for deterministic socio-economic impact analysis of using non-cooperative networks and secure texting as protection against radio network attacks. The simulation data and the open-source codebase is provided for reproducibility

    A Lightweight Secure and Resilient Transmission Scheme for the Internet of Things in the Presence of a Hostile Jammer

    Get PDF
    In this article, we propose a lightweight security scheme for ensuring both information confidentiality and transmission resiliency in the Internet-of-Things (IoT) communication. A single-Antenna transmitter communicates with a half-duplex single-Antenna receiver in the presence of a sophisticated multiple-Antenna-Aided passive eavesdropper and a multiple-Antenna-Assisted hostile jammer (HJ). A low-complexity artificial noise (AN) injection scheme is proposed for drowning out the eavesdropper. Furthermore, for enhancing the resilience against HJ attacks, the legitimate nodes exploit their own local observations of the wireless channel as the source of randomness to agree on shared secret keys. The secret key is utilized for the frequency hopping (FH) sequence of the proposed communication system. We then proceed to derive a new closed-form expression for the achievable secret key rate (SKR) and the ergodic secrecy rate (ESR) for characterizing the secrecy benefits of our proposed scheme, in terms of both information secrecy and transmission resiliency. Moreover, the optimal power sharing between the AN and the message signal is investigated with the objective of enhancing the secrecy rate. Finally, through extensive simulations, we demonstrate that our proposed system model outperforms the state-of-The-Art transmission schemes in terms of secrecy and resiliency. Several numerical examples and discussions are also provided to offer further engineering insights
    • …
    corecore