19 research outputs found

    Energy-Efficient Concurrency Control for Dynamic-Priority Real-Time Tasks with Abortable Critical Sections

    Get PDF
    In this paper, we are interested in energy-efficient concurrency control for real-time tasks on a non-ideal DVS processor. Based on well-known ceiling-based concurrency control protocols (such as priority ceiling protocol (PCP) and stack resource policy (SRP)), researchers have proposed energy-efficient approaches to mange concurrent accesses to shared resources so that the energy consumption can be reduced. However, ceiling-based protocols have a problem of ceiling blocking which imposes a great impact on the performance of real-time systems. In order to achieve sufficient performance, we propose a new protocol, called conditional abortable stack resource policy (CA-SRP), to resolve the ceiling blocking problem for dynamic-priority real-time tasks by incorporating a conditional abort rule into SRP. Based on the schedulability analysis of CA-SRP, we also propose a method, called dynamic speed assignment (DSA), to dynamically calculate and assign proper processor speeds for task execution so that the energy consumption can be reduced further. The capabilities of our proposed CA-SRP and DSA have been evaluated by a series of experiments, for which we have encouraging results

    The ADEPT Project: A Decade of Research and Development for Robust and Flexible Process Support - Challenges and Achievements

    Get PDF
    This paper gives insights into the ADEPT project. Its target was to develop a next generation process management technology, which is by orders of magnitudes more powerful and flexible than contemporary process management systems. The ADEPT technology should provide advanced features and properties within one system, which seem to exclude each other, but which are required for the support of a broad spectrum of processes: ease-of-use for end users and system developers, high flexibility through the support of non-trivial ad-hoc deviations at the process instance level, quick implementation of process changes through process schema evolution, and correctness guarantees enabling robust execution of implemented processes. This paper describes the background and the real-world cases which motivated our research. It further explains the technological challenges we faced, describes the solutions we elaborated, and discusses the current status of the ADEPT project

    Mechanisms for Unbounded, Conflict-Robust Hardware Transactional Memory

    Get PDF
    Conventional lock implementations serialize access to critical sections guarded by the same lock, presenting programmers with a difficult tradeoff between granularity of synchronization and amount of parallelism realized. Recently, researchers have been investigating an emerging synchronization mechanism called transactional memory as an alternative to such conventional lock-based synchronization. Memory transactions have the semantics of executing in isolation from one another while in reality executing speculatively in parallel, aborting when necessary to maintain the appearance of isolation. This combination of coarse-grained isolation and optimistic parallelism has the potential to ease the tradeoff presented by lock-based programming. This dissertation studies the hardware implementation of transactional memory, making three main contributions. First, we propose the permissions-only cache, a mechanism that efficiently increases the size of transactions that can be handled in the local cache hierarchy to optimize performance. Second, we propose OneTM, an unbounded hardware transactional memory system that serializes transactions that escape the local cache hierarchy. Finally, we propose RetCon, a novel mechanism for detecting conflicts that reduces conflicts by allowing transactions to commit with different values than those with which they executed as long as dataflow and control-flow constraints are maintained

    C3S2E-2008-2016-FinalPrograms

    Get PDF
    This document records the final programs for each of the 9 meetings of the C* Conference on Computer Science & Software Engineering, C 3S2E which were organized in various locations on three continents. The papers published during these years are accessible from the digital librariy of ACM(2008-2016

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Interaction-aware analysis and optimization of real-time application and operating system

    Get PDF
    Mechanical and electronic automation was a key component of the technological advances in the last two hundred years. With the use of special-purpose machines, manual labor was replaced by mechanical motion, leaving workers with the operation of these machines, before also this task was conquered by embedded control systems. With the advances of general-purpose computing, the development of these control systems shifted more and more from a problem-specific one to a one-size-fits-all mentality as the trade-off between per-instance overheads and development costs was in favor of flexible and reusable implementations. However, with a scaling factor of thousands, if not millions, of deployed devices, overheads and inefficiencies accumulate; calling for a higher degree of specialization. For the area real-time operating systems (RTOSs), which form the base layer for many of these computerized control systems, we deploy way more flexibility than what is actually required for the applications that run on top of it. Since only the solution, but not the problem, became less specific to the control problem at hand, we have the chance to cut away inefficiencies, improve on system-analyses results, and optimize the resource consumption. However, such a tailoring will only be favorable if it can be performed without much developer interaction and in an automated fashion. Here, real-time systems are a good starting point, since we already have to have a large degree of static knowledge in order to guarantee their timeliness. Until now, this static nature is not exploited to its full extent and optimization potentials are left unused. The requirements of a system, with regard to the RTOS, manifest in the interactions between the application and the kernel. Threads request resources from the RTOS, which in return determines and enforces a scheduling order that will ensure the timely completion of all necessary computations. Since the RTOS runs only in the exception, its reaction to requests from the application (or from the environment) is its defining feature. In this thesis, I will grasp these interactions, and thereby the required RTOS semantic, in a control-flow-sensitive fashion. Extracted automatically, this knowledge about the reciprocal influence allows me to fit the implementation of a system closer to its actual requirements. The result is a system that is not only in its usage a special-purpose system, but also in its implementation and in its provided guarantees. In the development of my approach, it became clear that the focus on these interactions is not only highly fruitful for the optimization of a system, but also for its end-to-end analysis. Therefore, this thesis does not only provide methods to reduce the kernel-execution overhead and a system's memory consumption, but it also includes methods to calculate tighter response-time bounds and to give guarantees about the correct behavior of the kernel. All these contributions are enabled by my proposed interaction-aware methodology that takes the whole system, RTOS and application, into account. With this thesis, I show that a control-flow-sensitive whole-system view on the interactions is feasible and highly rewarding. With this approach, we can overcome many inefficiencies that arise from analyses that have an isolating focus on individual system components. Furthermore, the interaction-aware methods keep close to the actual implementation, and therefore are able to consider the behavioral patterns of the finally deployed real-time computing system

    QualitĂ€t und Nutzen - Über den Gebrauch von Zeit-Wert-Funktionen zur Integration qualitĂ€ts- und zeit-flexibler Aspekte in einer dynamischen Echtzeit-Einplanungsumgebung

    Get PDF
    Scheduling methodologies for real-time applications have been of keen interest to diverse research communities for several decades. Depending on the application area, algorithms have been developed that are tailored to specific requirements with respect to both the individual components of which an application is made up and the computational platform on which it is to be executed. Many real-time scheduling algorithms base their decisions solely or partly on timing constraints expressed by deadlines which must be met even under worst-case conditions. The increasing complexity of computing hardware means that worst-case execution time analysis becomes increasingly pessimistic. Scheduling hard real-time computations according to their worst-case execution times (which is common practice) will thus result, on average, in an increasing amount of spare capacity. The main goal of flexible real-time scheduling is to exploit this otherwise wasted capacity. Flexible scheduling schemes have been proposed to increase the ability of a real-time system to adapt to changing requirements and nondeterminism in the application behaviour. These models can be categorised as those whose source of flexibility is the quality of computations and those which are flexible regarding their timing constraints. This work describes a novel model which allows to specify both flexible timing constraints and quality profiles for an application. Furthermore, it demonstrates the applicability of this specification method to real-world examples and suggests a set of feasible scheduling algorithms for the proposed problem class.Einplanungsverfahren fĂŒr Echtzeitanwendungen stehen seit Jahrzehnten im Interesse verschiedener Forschungsgruppen. AbhĂ€ngig vom Anwendungsgebiet wurden Algorithmen entwickelt, welche an die spezifischen Anforderungen sowohl hinsichtlich der einzelnen Komponenten, aus welchen eine Anwendung besteht, als auch an die Rechnerplattform, auf der diese ausgefĂŒhrt werden sollen, angepasst sind. Viele Echtzeit-Einplanungsverfahren grĂŒnden ihre Entscheidungen ausschließlich oder teilweise auf Zeitbedingungen, welche auch bei Auftreten maximaler AusfĂŒhrungszeiten eingehalten werden mĂŒssen. Die zunehmende KomplexitĂ€t von Rechner-Hardware bedeutet, dass die Worst-Case-Analyse in steigendem Maße pessimistisch wird. Die Einplanung harter Echtzeit-Berechnungen anhand ihrer maximalen AusfĂŒhrungszeiten (was die gĂ€ngige Praxis darstellt) resultiert daher im Regelfall in einer frei verfĂŒgbaren RechenkapazitĂ€t in steigender Höhe. Das Hauptziel flexibler Echtzeit-Einplanungsverfahren ist es, diese ansonsten verschwendete KapazitĂ€t auszunutzen. Flexible Einplanungsverfahren wurden vorgeschlagen, welche die FĂ€higkeit eines Echtzeitsystems erhöhen, sich an verĂ€nderte Anforderungen und Nichtdeterminismus im Verhalten der Anwendung anzupassen. Diese Modelle können unterteilt werden in solche, deren Quelle der FlexibilitĂ€t die QualitĂ€t der Berechnungen ist, und jene, welche flexibel hinsichtlich ihrer Zeitbedingungen sind. Diese Arbeit beschreibt ein neuartiges Modell, welches es erlaubt, sowohl flexible Zeitbedingungen als auch QualitĂ€tsprofile fĂŒr eine Anwendung anzugeben. Außerdem demonstriert sie die Anwendbarkeit dieser Spezifikationsmethode auf reale Beispiele und schlĂ€gt eine Reihe von Einplanungsalgorithmen fĂŒr die vorgestellte Problemklasse vor

    Space Transportation Materials and Structures Technology Workshop

    Get PDF
    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems
    corecore