29,917 research outputs found

    Rates of sustainable forest harvest depend on rotation length and weathering of soil minerals

    Get PDF
    Abstract Removals of forest biomass in the northeastern US may intensify over the coming decades due to increased demand for renewable energy. For forests to regenerate successfully following intensified harvests, the nutrients removed from the ecosystem in the harvested biomass (including N, P, Ca, Mg, and K) must be replenished through a combination of plant-available nutrients in the soil rooting zone, atmospheric inputs, weathering of primary minerals, biological N fixation, and fertilizer additions. Few previous studies (especially in North America) have measured soil nutrient pools beyond exchangeable cations, but over the long rotations common in this region, other pools which turn over more slowly are important. We constructed nutrient budgets at the rotation time scale for three harvest intensities and compared these with detailed soil data of exchangeable, organic, and primary mineral stocks of in soils sampled in 15 northern hardwood stands developed on granitic till soils in the White Mountain region of New Hampshire, USA. This comparison can be used to estimate how many times each stand might be harvested without diminishing productivity or requiring fertilization. Under 1990s rates of N deposition, N inputs exceeded removals except in the most intensive management scenario considered. Net losses of Ca, K, Mg, and P per rotation were potentially quite severe, depending on the assumptions used.Biologically accelerated soil weathering may explain the lack of observed deficiencies in regenerating forests of the region. Sites differed widely in the long-term nutrient capital available to support additional removals before encountering limitations (e.g., a fourfold difference in available Ca, and a tenfold difference in weatherable Ca). Intensive short-rotation biomass removal could rapidly deplete soil nutrient capital, but traditional long rotations, even under intensive harvesting, are unlikely to induce nutrient depletion in the 21st century. Weatherable P may ultimately limit biomass production on granitic bedrock (in as few as 6 rotations). Understanding whether and how soil weathering rates respond to nutrient demand will be critical to determining long-term sustainability of repeated intensive harvesting over centuries

    Evaluating the Potential Effects of Deicing Salts on Roadside Carbon Sequestration

    Get PDF
    This project sought to document patterns of road deicing salts and the effects of these salts on the amount of carbon being sequestered passively along Montana Department of Transportation roads; it was designed collaboratively with a related roadside project that tested three different highway right-of-way management techniques (mowing height, shrub planting, disturbance) to determine whether they have the capacity to increase soil organic carbon. Our sampling did not reveal elevated salt levels at any of the nine locations sampled at each of the three I-90 sites. The greatest saline concentrations were found at the sample locations farthest from the road. This pattern was consistent across all three sites. The range of soil organic matter (SOM) was broad, from ~1% to >10%. Generally, SOM values were lowest adjacent to the road and highest farthest from the road. We found no or weak evidence of a relationship between our indices of soil salinity and SOM levels, with electrical conductivity, exchangeable calcium, and cation exchange capacity. Results imply that if road deicing salts are altering patterns of roadside SOM and potential carbon sequestration, this effect was not captured by our experimental design, nor did deicing salts appear to have affected roadside vegetation during our most recent sampling effort. Our findings highlight the value of experimentally separating the multiple potentially confounding effects of winter maintenance operations on roadside soils: roads could focus the flow of water, salts, and sands to roadside soils. How these types of mass inputs to roadside soils might influence medium- or long-term carbon dynamics remains an open question, but their fuller characterization and possible flow paths will be essential to clarifying the role of roadside soils in terrestrial soil organic carbon sequestration strategies

    A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks

    Full text link
    An explosion of high-throughput DNA sequencing in the past decade has led to a surge of interest in population-scale inference with whole-genome data. Recent work in population genetics has centered on designing inference methods for relatively simple model classes, and few scalable general-purpose inference techniques exist for more realistic, complex models. To achieve this, two inferential challenges need to be addressed: (1) population data are exchangeable, calling for methods that efficiently exploit the symmetries of the data, and (2) computing likelihoods is intractable as it requires integrating over a set of correlated, extremely high-dimensional latent variables. These challenges are traditionally tackled by likelihood-free methods that use scientific simulators to generate datasets and reduce them to hand-designed, permutation-invariant summary statistics, often leading to inaccurate inference. In this work, we develop an exchangeable neural network that performs summary statistic-free, likelihood-free inference. Our framework can be applied in a black-box fashion across a variety of simulation-based tasks, both within and outside biology. We demonstrate the power of our approach on the recombination hotspot testing problem, outperforming the state-of-the-art.Comment: 9 pages, 8 figure

    On q-Gaussians and Exchangeability

    Full text link
    The q-Gaussians are discussed from the point of view of variance mixtures of normals and exchangeability. For each q< 3, there is a q-Gaussian distribution that maximizes the Tsallis entropy under suitable constraints. This paper shows that q-Gaussian random variables can be represented as variance mixtures of normals. These variance mixtures of normals are the attractors in central limit theorems for sequences of exchangeable random variables; thereby, providing a possible model that has been extensively studied in probability theory. The formulation provided has the additional advantage of yielding process versions which are naturally q-Brownian motions. Explicit mixing distributions for q-Gaussians should facilitate applications to areas such as option pricing. The model might provide insight into the study of superstatistics.Comment: 14 page

    Characterization of lead-recycling facility emissions at various workplaces: Major insights for sanitary risks assessment

    Get PDF
    Most available studies on lead smelter emissions deal with the environmental impact of outdoor particles, but only a few focus on air quality at workplaces. The objective of this study is to physically and chemically characterize the Pb-rich particles emitted at different workplaces in a lead recycling plant. A multiscale characterization was conducted from bulk analysis to the level of individual particles, to assess the particles properties in relation with Pb speciation and availability. Process PM from various origins were sampled and then compared; namely Furnace and Refining PM respectively present in the smelter and at refinery workplaces, Emissions PM present in channeled emissions. These particles first differed by their morphology and size distribution, with finer particles found in emissions. Differences observed in chemical composition could be explained by the industrial processes. All PM contained the same major phases (Pb, PbS, PbO, PbSO4 and PbO·PbSO4) but differed on the nature and amount of minor phases. Due to high content in PM, Pb concentrations in the CaCl2 extractant reached relatively high values (40mgL−1). However, the ratios (soluble/total) of CaCl2 exchangeable Pb were relatively low (<0.02%) in comparison with Cd (up to 18%). These results highlight the interest to assess the soluble fractions of all metals (minor and major) and discuss both total metal concentrations and ratios for risk evaluations. In most cases metal extractability increased with decreasing size of particles, in particular, lead exchangeability was highest for channeled emissions. Such type of study could help in the choice of targeted sanitary protection procedures and for further toxicological investigations. In the present context, particular attention is given to Emissions and Furnace PM. Moreover, exposure to other metals than Pb should be considered
    • 

    corecore