42 research outputs found

    Efficient design of WIMAX/802.16 mesh networks

    Get PDF
    Broadband wireless networks are becoming increasingly popular due to their fast and inexpensive deployment and their capabilities of providing flexible and ubiquitous Internet access. While the majority of existing broadband wireless networks are still exclusively limited to single hop access, it is the ability of these networks to forward data frames over multi-hop wireless routes which enabled them to easily extend the network coverage area. Unfortunately, achieving good multi- hop throughput has been challenging due to several factors, such as lossy wireless links caused by interference from concurrent transmissions, and intra-path interference caused by transmissions on successive hops along a single path. A wireless mesh network WMN consists of a number of stationary wireless mesh routers, forming a wireless backbone. The wireless mesh routers serve as access points (APs) for wireless mobile devices, and some of them also act as gateways to the Internet via high speed wireless links. Several technologies are currently being considered for mesh (multi-hop) networks, including, IEEE 802.11 (both single channel and multi-channel), IEEE 802.16/WiMAX, and next generation cellular networks (LTE). In this work, we focus on the IEEE 802.16. To maximize the network performance of mesh networks (e.g., throughput), it is essential to consider a cross-layer design, exploiting the dependency between protocol layers such as the routing network layer and the scheduling resource allocation MAC layer. Therefore this PhD thesis considers a cross-layer design approach for designing efficient wireless mesh networks; we first develop mathematical models (link-based and path-based) for the problem of joint routing tree construction and link scheduling in WiMAX-based mesh networks with the objective of minimizing the schedule length to satisfy a set of uplink and downlink demands. This is achieved by maximizing the number of concurrent active transmissions in the network by efficiently reusing the spectrum spatially. Second, we exploit the broadcasts nature of the wireless medium and enhance our design models by incorporating opportunistic network coding into the joint routing tree construction and link scheduling problem. Identifying coding-aware routing structures and utilizing the broadcasting feature of the wireless medium play an important role in realizing the achievable gain of network coding. Last, the uprising mobile WiMAX (802.16e amendment) has introduced more difficulties and challenges into the network design problem; thus, ensuring larger connection lifetime and better routing stability become of greater interest for the joint routing and scheduling problem. This is addressed by augmenting the previously designed models. Throughout this thesis, we assume centralized scheduling at the base station (BS) and we develop, for the joint problems, integer linear programming (ILP) models which require the enumeration of all feasible solutions to reach the optimal solution. Given their complexities, we rely on optimization decomposition methods using column generation for solving each model in an efficient way

    Estratégias de design de camada intermédia e cooperativa para redes sem fios energeticamente eficientes

    Get PDF
    Doutoramento conjunto MAP-i em InformáticaThe promise of a truly mobile experience is to have the freedom to roam around anywhere and not be bound to a single location. However, the energy required to keep mobile devices connected to the network over extended periods of time quickly dissipates. In fact, energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Furthermore, multi-standard mobile devices are allowing users to enjoy higher data rates with ubiquitous connectivity. However, the bene ts gained from multiple interfaces come at a cost in terms of energy consumption having profound e ect on the mobile battery lifetime and standby time. This concern is rea rmed by the fact that battery lifetime is one of the top reasons why consumers are deterred from using advanced multimedia services on their mobile on a frequent basis. In order to secure market penetration for next generation services energy e ciency needs to be placed at the forefront of system design. However, despite recent e orts, energy compliant features in legacy technologies are still in its infancy, and new disruptive architectures coupled with interdisciplinary design approaches are required in order to not only promote the energy gain within a single protocol layer, but to enhance the energy gain from a holistic perspective. A promising approach is cooperative smart systems, that in addition to exploiting context information, are entities that are able to form a coalition and cooperate in order to achieve a common goal. Migrating from this baseline, this thesis investigates how these technology paradigm can be applied towards reducing the energy consumption in mobile networks. In addition, we introduce an additional energy saving dimension by adopting an interlayer design so that protocol layers are designed to work in synergy with the host system, rather than independently, for harnessing energy. In this work, we exploit context information, cooperation and inter-layer design for developing new energy e cient and technology agnostic building blocks for mobile networks. These technology enablers include energy e cient node discovery and short-range cooperation for energy saving in mobile handsets, complemented by energy-aware smart scheduling for promoting energy saving on the network side. Analytical and simulations results were obtained, and veri ed in the lab on a real hardware testbed. Results have shown that up to 50% energy saving could be obtained.A promessa de uma experiência realmente móvel é de ter a liberdade de deambular por qualquer sítio e não estar preso a um único local. No entanto, a energia requerida para manter dispositivos móveis conectados à rede, num período extenso de tempo, o mesmo rapidamente se dissipa. Na realidade, a energia é um recurso crítico no design de redes sem fios, uma vez que esses dispositivos são alimentados por baterias. Para além disso, dispositivos móveis multi-standard permitem que os utilizadores desfrutem de elevadas taxas de dados com conectividade omnipresente. No entanto, as vantagens adquiridas pelas múltiplas interfaces, imputa uma despesa, sendo essa um consumo maior de energia, numa era onde os dispositivos móveis têm de ser energicamente complacentes. Esta preocupação é reafirmada pelo facto de que a vida da bateria é uma das principais razões que impede os utilizadores de usufruir e utilizar de serviços de multimédia mais avançados nos seus dispositivos, numa base frequente. De forma a assegurar a entrada no mercado para serviços da próxima geração, eficiência energética tem de ser colocada na vanguarda do design de sistemas. No entanto, apesar de esforços recentes, funcionalidades que cumpram os requisitos energéticos em tecnologias "legacy" ainda estão nos seus primórdios e novas abordagens disruptivas são requeridas, juntamente com abordagem de design interdisciplinar, de forma a aproveitar a poupança energética das diversas camadas protocolares. Uma bordagem promissora são os sistemas de cooperação inteligente, que exploram não são contexto da informação, mas também as entidades que são igualmente capazes de formar uma coligação e cooperam de forma a atingir um objectivo comum. Migrar a partir destas referências, esta tese investiga como é que este paradigma tecnológico pode ser aplicado para reduzir a potência e consumo de energia em redes móveis. Para além disso, introduzimos uma dimensão de poupança energética adicional, para adopção de design de camadas intermédias, de forma a que as camadas de protocolos sejam concebidas para trabalhar em sinergia com o sistema anfitrião, ao invés de independentemente, para aproveitamento de energia. Neste trabalho, nós exploramos o contexto da informação, cooperação e design de camadas intermédias para desenvolver blocos de construção energicamente eficientes e tecnologias agnósticas para redes móveis. Estes habilitadores (enablers) tecnológicos incluem um nó de descoberta de energia eficiente e cooperação de curto alcance para poupança energética em aparelhos móveis, complementado com agendamento inteligente, energicamente consciente, de forma a promover a poupança de energia do lado da rede. Analiticamente e simultaneamente, foram obtidos resultados e verificados em laboratório, num modelo de hardware protótipo. Resultados demonstram que pode ser obtido uma poupança energética acima dos 50%

    Portfolio peak algorithms achieving superior performance for maximizing throughput in WiMAX networks

    Get PDF
    The Mobile WiMAX IEEE 802.16 standards ensure provision of last mile wireless access, variable and high data rate, point to multi-point communication, large frequency range and QoS (Quality of Service) for various types of applications. The WiMAX standards are published by the Institute of Electric and Electronic Engineers (IEEE) and specify the standards of services and transmissions. However, the way how to run these services and when the transmission should be started are not specified in the IEEE standards and it is up to computer scientists to design scheduling algorithms that can best meet the standards. Finding the best way to implement the WiMAX standards through designing efficient scheduler algorithms is a very important component in wireless systems and the scheduling period presents the most common challenging issue in terms of throughput and time delay. The aim of the research presented in this thesis was to design and develop an efficient scheduling algorithm to provide the QoS support for real-time and non-real-time services with the WiMAX Network. This was achieved by combining a portfolio of algorithms, which will control and update transmission with the required algorithm by the various portfolios for supporting QoS such as; the guarantee of a maximum throughput for real-time and non-real-time traffic. Two algorithms were designed in this process and will be discussed in this thesis: Fixed Portfolio Algorithms and Portfolio Peak Algorithm. In order to evaluate the proposed algorithms and test their efficiency for IEEE 802.16 networks, the authors simulated the algorithms in the NS2 simulator. Evaluation of the proposed Portfolio algorithms was carried out through comparing its performance with those of the conventional algorithms. On the other hand, the proposed Portfolio scheduling algorithm was evaluated by comparing its performance in terms of throughput, delay, and jitter. The simulation results suggest that the Fixed Portfolio Algorithms and the Portfolio Peak Algorithm achieve higher performance in terms of throughput than all other algorithms. Keywords: WiMAX, IEEE802.16, QoS, Scheduling Algorithms, Fixed Portfolio Algorithms, and Portfolio Peak Algorithms.The Mobile WiMAX IEEE 802.16 standards ensure provision of last mile wireless access, variable and high data rate, point to multi-point communication, large frequency range and QoS (Quality of Service) for various types of applications. The WiMAX standards are published by the Institute of Electric and Electronic Engineers (IEEE) and specify the standards of services and transmissions. However, the way how to run these services and when the transmission should be started are not specified in the IEEE standards and it is up to computer scientists to design scheduling algorithms that can best meet the standards. Finding the best way to implement the WiMAX standards through designing efficient scheduler algorithms is a very important component in wireless systems and the scheduling period presents the most common challenging issue in terms of throughput and time delay. The aim of the research presented in this thesis was to design and develop an efficient scheduling algorithm to provide the QoS support for real-time and non-real-time services with the WiMAX Network. This was achieved by combining a portfolio of algorithms, which will control and update transmission with the required algorithm by the various portfolios for supporting QoS such as; the guarantee of a maximum throughput for real-time and non-real-time traffic. Two algorithms were designed in this process and will be discussed in this thesis: Fixed Portfolio Algorithms and Portfolio Peak Algorithm. In order to evaluate the proposed algorithms and test their efficiency for IEEE 802.16 networks, the authors simulated the algorithms in the NS2 simulator. Evaluation of the proposed Portfolio algorithms was carried out through comparing its performance with those of the conventional algorithms. On the other hand, the proposed Portfolio scheduling algorithm was evaluated by comparing its performance in terms of throughput, delay, and jitter. The simulation results suggest that the Fixed Portfolio Algorithms and the Portfolio Peak Algorithm achieve higher performance in terms of throughput than all other algorithms. Keywords: WiMAX, IEEE802.16, QoS, Scheduling Algorithms, Fixed Portfolio Algorithms, and Portfolio Peak Algorithms

    Performance analysis of 4G wireless networks using system level simulator

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaIn the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.FC

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Integrated control platform for converged optical and wireless networks

    Get PDF

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    corecore