3,490 research outputs found

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    A Survey on Load Balancing Algorithms for VM Placement in Cloud Computing

    Get PDF
    The emergence of cloud computing based on virtualization technologies brings huge opportunities to host virtual resource at low cost without the need of owning any infrastructure. Virtualization technologies enable users to acquire, configure and be charged on pay-per-use basis. However, Cloud data centers mostly comprise heterogeneous commodity servers hosting multiple virtual machines (VMs) with potential various specifications and fluctuating resource usages, which may cause imbalanced resource utilization within servers that may lead to performance degradation and service level agreements (SLAs) violations. To achieve efficient scheduling, these challenges should be addressed and solved by using load balancing strategies, which have been proved to be NP-hard problem. From multiple perspectives, this work identifies the challenges and analyzes existing algorithms for allocating VMs to PMs in infrastructure Clouds, especially focuses on load balancing. A detailed classification targeting load balancing algorithms for VM placement in cloud data centers is investigated and the surveyed algorithms are classified according to the classification. The goal of this paper is to provide a comprehensive and comparative understanding of existing literature and aid researchers by providing an insight for potential future enhancements.Comment: 22 Pages, 4 Figures, 4 Tables, in pres

    Cloud Computing Service Selection Algorithm

    Get PDF
    In modern world Cloud Computing is one of the most promising and evolving areas of computer science. As time passes by more and more cloud devices are being setup. Similarly more companies and industries are opting for cloud services, etc. Cloud has made up a virtual reality of the practical world. It oers online storage space, online infrastructure, online platforms, etc to make our everyday computing experience easier and cheaper. One of the aspects of cloud computing is provision of servers to execute our programs which comes under Infrastructure as a Service (IaaS). In this project we have focused on devising an algorithm to schedule jobs and allocate servers in cloud systems. The algorithm is ecient as it provides optimal allocation. It maximizes the number of job requests that can be processed in unit time while conserving energy and keeping the costs low. The said optimal allocation is achieved by reducing the idle time of nodes of active servers and reducing the total number of servers used. We implemented our algorithm using random data sets of job requests with dierent attributes and generated simulations in forms of graphs. The graphs prove the eciency of job scheduling algorithm and the server allocation for which we used Best Fit algorithm of the Bin Packing problem. Finally a detailed analysis is given and future works are stated

    A Survey of Virtual Machine Placement Techniques and VM Selection Policies in Cloud Datacenter

    Get PDF
    The large scale virtualized data centers have been established due to the requirement of rapid growth in computational power driven by cloud computing model . The high energy consumption of such data centers is becoming more and more serious problem .In order to reduce the energy consumption, server consolidation techniques are used .But aggressive consolidation of VMs can lead to performance degradation. Hence another problem arise that is, the Service Level Agreement(SLA) violation. The optimized consolidation is achieved through optimized VM placement and VM selection policies . A comparative study of virtual machine placement and VM selection policies are presented in this paper for improving the energy efficiency

    Scheduling Storms and Streams in the Cloud

    Full text link
    Motivated by emerging big streaming data processing paradigms (e.g., Twitter Storm, Streaming MapReduce), we investigate the problem of scheduling graphs over a large cluster of servers. Each graph is a job, where nodes represent compute tasks and edges indicate data-flows between these compute tasks. Jobs (graphs) arrive randomly over time, and upon completion, leave the system. When a job arrives, the scheduler needs to partition the graph and distribute it over the servers to satisfy load balancing and cost considerations. Specifically, neighboring compute tasks in the graph that are mapped to different servers incur load on the network; thus a mapping of the jobs among the servers incurs a cost that is proportional to the number of "broken edges". We propose a low complexity randomized scheduling algorithm that, without service preemptions, stabilizes the system with graph arrivals/departures; more importantly, it allows a smooth trade-off between minimizing average partitioning cost and average queue lengths. Interestingly, to avoid service preemptions, our approach does not rely on a Gibbs sampler; instead, we show that the corresponding limiting invariant measure has an interpretation stemming from a loss system.Comment: 14 page

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Toward sustainable data centers: a comprehensive energy management strategy

    Get PDF
    Data centers are major contributors to the emission of carbon dioxide to the atmosphere, and this contribution is expected to increase in the following years. This has encouraged the development of techniques to reduce the energy consumption and the environmental footprint of data centers. Whereas some of these techniques have succeeded to reduce the energy consumption of the hardware equipment of data centers (including IT, cooling, and power supply systems), we claim that sustainable data centers will be only possible if the problem is faced by means of a holistic approach that includes not only the aforementioned techniques but also intelligent and unifying solutions that enable a synergistic and energy-aware management of data centers. In this paper, we propose a comprehensive strategy to reduce the carbon footprint of data centers that uses the energy as a driver of their management procedures. In addition, we present a holistic management architecture for sustainable data centers that implements the aforementioned strategy, and we propose design guidelines to accomplish each step of the proposed strategy, referring to related achievements and enumerating the main challenges that must be still solved.Peer ReviewedPostprint (author's final draft
    corecore