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Abstract

In modern world Cloud Computing is one of the most promising and evolving

areas of computer science. As time passes by more and more cloud devices are being

setup. Similarly more companies and industries are opting for cloud services, etc.

Cloud has made up a virtual reality of the practical world. It offers online storage

space, online infrastructure, online platforms, etc to make our everyday computing

experience easier and cheaper. One of the aspects of cloud computing is provision of

servers to execute our programs which comes under Infrastructure as a Service (IaaS).

In this project we have focused on devising an algorithm to schedule jobs and allocate

servers in cloud systems. The algorithm is efficient as it provides optimal allocation.

It maximizes the number of job requests that can be processed in unit time while

conserving energy and keeping the costs low. The said optimal allocation is achieved

by reducing the idle time of nodes of active servers and reducing the total number of

servers used. We implemented our algorithm using random data sets of job requests

with different attributes and generated simulations in forms of graphs. The graphs

prove the efficiency of job scheduling algorithm and the server allocation for which

we used Best Fit algorithm of the Bin Packing problem. Finally a detailed analysis

is given and future works are stated.
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Chapter 1

Introduction

Cloud Computing, in a simple words, means Internet based Computing. Since the

Internet can be thought of as clouds, and therefore the term cloud computing is used.

Process execution and computation is done through the Internet. The users who use

Cloud can have access to any resource and database with proper authority through

the Internet anytime from anyplace and for as long as they need it, without having to

worry about any management or maintenance of actual resources. Besides, resources

and databases in cloud are usually very scalable and dynamic. Pondering over a brief

history we find that:

McCarthy, was the first to propose in the year 1957 that the time sharing of

computing resources might allow industries to sell excess computation facilities for

maximum and efficient usage of the resource[1]. Licklider, an ARPA programmer,

mentioned that sending pieces of a single complex program to a network of individual

logically connected systems could share in and pool their individual resources to solve

that problem and of course a common language for those computers to be able to

communicate with each other needed to be established[2]. Parkhill, in 1966, came out

with a paper which identified most of the problems that cloud computing faces, such

as scalability and large bandwidth requirement.

Cloud computing isn’t like utility computing or grid computing. In fact, when it

comes to process execution and data storage it is very independent.
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1.1. Grid Computing

1.1 Grid Computing

Grid computing is defined as the usage of available and linked computer resources

from several administrative areas to solve a common problem. It can be thought of

as a distributed system with un-interactive workloads consisting of numerous files,

but they are more loosely coupled, heterogeneous, and not necessarily geographically

constrained when contrasted with cluster computing.

In simple terms, grid computing can be portrayed as a super virtual computer

consisting of a network of loosely coupled computers cooperating to perform big tasks.

Grid Computing is often regarded as the precursor of Cloud computing (Grid

Computing actually evolved into the cloud). Grid is more useful when allocating

resources on-demand (dynamic resource provisioning).

Grid Computing needs a software to diversify and distribute parts of a program

(as a single large system image) to a large number of computers. A major drawback

of the Grid is that if one part of software on a node fails, other parts of the software

on the other nodes may fail. Installing a failover component on other nodes can be

use to correct this, but when a few components depend on some other components the

same problem may surface. Also, huge capital and operational expenses are incurred

to construct and run a grid.

In the late 1980s with the grid computing concept started a paradigm shift towards

the cloud. For the first time, several systems were used to solve a single problem, which

were scientific and required exceptionally high levels of parallel computing[4].

1.2 Utility Computing

Though utility computing often needs infrastructure like a cloud system, its prime aim

is on the business structure on which providing the computing services are based. In

simple words, in utility computing service the users receive computational resources,

software or hardware, from a service provider and pay as per the basis of usage.

The main advantage of Utility computing is its economical benefits. Corporate

data centers are not utilized as much as they are supposed to, with important resources

like servers remain idle almost 85 percent of the time[5]. Purchasing more hardware
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INTRODUCTION

than is generally required just to handle peak time spans such as the opening of the

Wall Street trading day or the holiday shopping season, to handle anticipated future

loads and to prepare for unexpected rises in demand[5]. Utility computing allows

companies to only shell out money for the computing resources they require, when

they require them.

Utility computing is responsible to the business models where application infras-

tructure resources like hardware and/or software are delivered. Whereas cloud com-

puting is the way we design, create, implement and execute applications that run in a

virtualized surrounding. Here they share the existing resources and have the freedom

to dynamically expand, shrink and self recover.

1.3 Cloud Computing

Cloud Computing is a generic term that involves delivering hosted services over the

Internet. The Internet is often represented by the symbol cloud due to its dynamic

structure and hence Cloud computing was inspired by the same[6].

The concept of cloud computing is broader than that of utility computing and

relates to the underlying architecture in which the services are designed[5]. Cloud

computing can be used to imply internal corporate data centers and utility services.

Cloud computing is comparable to software as a service, on-demand services, or the

Internet as platform. Cloud computing delivers application or software services from

widespread geographic locations instead of a single location. The transfer from locally

installed infrastructure and programs to cloud computing is just getting under way in

an intense manner[7]. Franco Travostino pointed out one difference between clouds

and grids that the cloud was a brain child of the Web 2.0 mindset. Grid was a work of

super-computing teams who have an almost religious mindset for dealing with things,

which are very complex by nature, without the fear of the complexity, whereas on the

other hand clouds came out of a simple mindset[8].

Although it is mind wracking to come up with an accurate and all-inclusive def-

inition of cloud computing, at the core of it is the notion that applications run in

some virtual place on the cloud (may be the Internet or an internal corporate net-
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1.3. Cloud Computing

work) which the end user doesn’t know or care about. But that is not big news: End

Users have been using web applications for years without any concern as to where the

applications actually run.

The main aspects which helped cloud computing to be adopted were the illusion

of infinite computing resources, thereby getting rid of the need to plan ahead for

provisioning for Cloud Computing users; getting rid of an upfront commitment by

Cloud users. This in turn allows companies to be able to start small and use the

required number of hardware resources depending on solely on their real time needs

and the capability to pay as they require for use of computing resources on a short

term basis and release them as needed[9].

Done right, cloud computing gives the freedom to IT operations and application

developers to develop, implement and execute applications that can easily expand

or reduce in capacity (scalability), execute faster (performance), and very rarely or

never fail (reliability), all without any geographic related concern as to the nature

and location of the underlying infrastructure.

Taking it to the next step, this implies that cloud computing architectures, and

particularly their middleware and application platforms, should preferably have these

properties:

• Self-healing

A hot backup instance of the application should be ready to take over without

disruption (called failover) in case of failure in the cloud. This also means that

if a policy, which says everything should always have a backup, is set and a fail

occurs so that the backup becomes the primary, the system should start a new

backup, maintaining the reliability policies.

• SLA-driven

The system is dynamically maintained by SLAs that formalize policies such as

how quickly responses to requests need to be sent. If the system is experiencing

very high load values, it will create extra instances of the software on more nodal

servers so that it complies with the agreed service levels even at the expense of

a low-priority request[10].
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INTRODUCTION

• Multi-tenancy

The whole system is made in such a way that it allows several users to share

infrastructure, without the users being aware of it’s internal specifications and

without conciliating the security and privacy of every individual user’s data.

• Service-oriented

The software allows building applications from several discrete services that are

coupled loosely (basically meaning that they are independent of each other).

Changes made to or failure of even one service will not disturb or influence

other services. It also means that services can be used again and again.

• Virtualized

Applications are separated from the underlying hardware. Several applications

can be executed on a single computer or several computers can be used to

execute a single application.

• Linearly Scalable

The system will be predictable and very efficient in developing the application.

If one server can process 10,000 transactions per second, two servers should be

able to process 20,000 transactions per second, and so forth.

• Data

The main solution to many of these problems is the management of the data:

its partitioning, synchronization, distribution and security.

The US National Institute of Standards and Technology (NIST) has developed a

working definition that covers the commonly agreed aspects of cloud computing. It

summarizes cloud computing as: a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g. networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction.[11, 12].

This definition describes cloud computing as having five essential characteristics,

and two distinct sets of models.
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1.3. Cloud Computing

The essential characteristics[12] are:

• On Demand self-service

Cloud services are on-demand; that is, consumers can automatically request

the service based on their needs, without human interaction with the service

provider[13].

• Broad Network access

Accessing cloud services is made easy via the network using generalized inter-

faces and different access mechanisms. This does not imply that the service

must be always available via the internet as this will be based on the opera-

tional model used. But it should be possible to access the services as per the

policy used[13].

• Resource pooling

Resources are shared between multiple tenants, and generally assigned exclu-

sively at run time to one consumer at a time based on the needs of the tenant.

Pooling resources helps increase utilization, and thus is instrumental in decreas-

ing the operation costs[13].

• Rapid elasticity

Cloud Computing provides mechanisms to allow quick provisioning and releasing

of resources[13]. This combined with a enormous pool of resources in the data

centre gives the image of unlimited resources to the users and provides flexibility

in their provisioning.

• Measured service

Cloud Computing provides Mechanisms to measure service usage and health of

the system. This enables optimization of resources and provides transparency

for both users and providers allowing better utilization of the service[13].

Cloud computing has several applications such as Microsoft’s Windows Azure Cloud

services is being used by Infosys, which includes SQL Data services, in order to develop
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Cloud-based software applications so that sharing of data on inventories can be done

by vehicle dealers. Google App Engine is used by Best Buy’s Giftag applet to let users

make and share wish lists from different pages they surf on the Internet. IBM Cloud

services is used by a retailer in China, Wang Fu Jing Department Store, including

supply chain management software for its network of retail stores. Virtually limitless

resources is offered by Cloud, on-demand, at a comparatively lower expense.

There are distinctively 3 components of the cloud:

Clients

Clients refer to the devices that the end users utilize to interface with the cloud

when they require the services of the cloud. They can be personal computers,

laptops, smart mobile phones etc. Thin clients are the computers that do not

contain internal hard drives and simply display the data from the server. Thick

client is a normal computer that connects to the cloud using web browsers like

Internet Explorer, Mozilla Firefox etc. Thin clients have emerged as a popular

solution because of their lessened price and enhanced information security. In-

formation security is better in case of thin clients as the processing of data and

storage takes place directly on the server without involving the client.

Data Center

It is an agglomeration of servers where the application to which the users have

subscribed is placed. It can be stored anywhere and can be accessed via the

internet. A superior solution is to use virtual servers through a single physical

server. A software can be installed that permits multiple instances of virtual

servers to run whenever the physical server is accessed.

Databases

The information or data is stored at these places in the cloud. The storage units

can consists of several servers stored in a single place like the Facebook’s data

storage or it can extend over a widespread area with several servers around the

world connected with each other.
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1.3. Cloud Computing

The two distinct sets of models cloud computing can be separated into are:

• Deployment Models[12]

Based on the placement and management of the cloud infrastructure there are

models which decide the protocol via which the cloud services are deployed to

its users.

• Service/Delivery Models[12]

A cloud can give access to software applications such as email or office produc-

tivity tools (the Software as a Service, or SaaS, service model), or can provide an

environment for customers to use to create and deploy their own software (the

Platform as a Service, or PaaS, service model), or can provide network access to

traditional resources used for computing such as storage and processing power

(the Infrastructure as a Service, or IaaS, service model)[14].
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Chapter 2

Literature Review

2.1 Deployment Models

Companies provide the cloud features with the same attributes over different mediums

depending on factors like business profile, operational and technical requirements,

etc. But the key factor is whether the provider is an external party or an internal IT

department. There are 4 deployment methods:

• Private Cloud[12]

It is a proprietary computing model that restricts the individuals with access to

the hosted services behind a firewall. Due to security, privacy and governance

control some companies prefer private clouds. In this the infrastructure is man-

aged and operated exclusively for one company. This restricts a third party

intervention.

• Public Cloud[12]

A public cloud allows resources such as applications and storage to be accessible

to the public over the internet. They are an extension of the private cloud with

further value profit. They are simpler and cheaper to set up and waste fewer

resources as customer only acquires what he needs. They are maintained over a

private or shared server but its services are extended over to the public without

any restrictions.

• Hybrid Cloud[12]

9



2.1. Deployment Models

A hybrid cloud, as the name implies is composed of a minimum of one private

cloud and a minimum of one public cloud. Ideally, this model allows a business to

get the advantages of measurability and cost-effectiveness supplied by the public

cloud model while retaining the privacy, security and policy of the private cloud

model.

• Community Cloud[12]

A community cloud is a multiple tenant infrastructure that is shared among

multiple organizations from a particular group with similar computing require-

ments. Such requirements may be related to regulatory compliance, such as

audit requirements, or might be related to performance requirements, such as

hosting applications that need fast response time.

Figure 2.1: Cloud Deployment Models

10
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Attributes Public Cloud Private Cloud Hybrid Cloud Community
Cloud

Cost of build-
ing data-center
on the consumer

None High Medium Varies de-
pending on
number of
cooperatives

Operation and
maintenance
cost on provider

Lowest Highest Less than pri-
vate clouds

Similar to pri-
vate clouds

Data-center size Very large Large Smaller than
private cloud

Larger than
private cloud
but smaller
than public
clouds

Infrastructure
controllability
and flexibility

Limited Full control Full control
over public
cloud and
limited con-
trol over
public cloud

High but
limited by
community
policies

Level of trust Lowest Highest Medium High

Infrastructure
location

Off premise On premise Both on and
off premise

Within the
cooperative
facility

Infrastructure
owner

IaaS vendor Customer IaaS vendor
owns public
part and cus-
tomer owns
on-premise
part

Shared
between
cooperatives

Table 2.1: Cloud Deployment Models
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2.2 Service Models

• Software as a Service (SaaS)[12]

SaaS, or Software as a Service, allows users to rent or borrow software online

instead of actually buying it and installing it on their own systems. It provides a

whole environment with pre-installed applications. Users can access their tools

and files using a web browser, in effect, doing the entire processing work and

file saving on the Internet. The major advantage of Software as a Service is

lowered cost for every involved party. Software vendors simply maintain and

repair a single central copy of the product online instead of spending valuable

resources supporting users over the phone. On the other hand, users do not have

to pay the enormous up front costs of fully purchasing end user products like

word processing and spreadsheet that they require. They instead pay a minimal

rental fees to access the large central copy of the product whenever they need

it.

• Platform as a Service (PaaS)[12]

Platform as a Service provides a framework for the developers to create and

deploy their own applications on a hosted infrastructure. It typically provides

computing platforms which may include operating systems, programming lan-

guage execution environments, databases, web servers etc.

• Infrastructure as a Service (IaaS)[12]

In the case of Infrastructure as a Service, the computing resources provided

are virtualized hardware, or a computing infrastructure. It is sometimes called

Hardware as a Service (HaaS) because the customer only borrows the basic hard-

ware resource for building their own framework. They have to customize their

entire framework using virtual machines, memory etc. These virtual resources

can be managed programmatically.

12
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Figure 2.2: Cloud Service Models

Sl. No. MODEL DEPLOYMENT METHOD
1. IaaS Private cloud, Hybrid cloud

2. PaaS Community cloud, Public cloud

3. SaaS Community cloud, Hybrid cloud

4. DaaS Private cloud, Hybrid cloud

Table 2.2: Cloud Service Deployment

2.3 Job Scheduling

In cloud computing, an Infrastructure as a Service (IaaS) provider divides its physical

resources (such as CPU, memory disk) into different types of virtual machines (VMs).

These Virtual Machines types may have distinct sizes and features, and are offered as

services to the general public[15]. A Virtual Machine is an efficient and independent

substitute for a real machine. A particular service is chosen and the client issues its job

requests to that service. The service is selected on the basis of unit price, distance,

response time, traffic volume, storage space, processor of nodes/VMs (VM stands

for Virtual Machine), etc. The VM we refer to acts as a system virtual machine

providing a complete system platform which supports the execution of a complete

operating system.

Now once a service is selected, the service implements an algorithm to allocate

servers and VMs to the jobs requested by its users. Now this algorithm has to ef-

ficiently manage the allocation so that it ultimately aims for fastest execution time

13
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along with proper usage/management of resources. This leads to maximum profits as

it can execute several job requests in minimum time. In addition to that when some

servers are idle, their power supply can be cut off in order to save energy and hence

cut the costs in that department again leading to maximized profits.

Most scheduling algorithms can be classified into two types:

Static Scheduling: All information about available resources and the jobs are known

before the scheduling and a job is assigned only once to a resource, so adapting

is easier as it is based on schedulers perspective[16, 17].

Dynamic Scheduling: This involves dynamically scheduling the jobs over time[18].

It is more flexible than static scheduling as it allows the determination of run

time in advance. To obtain stable, accurate and efficient scheduler algorithm,

it is important to include load balance as a major factor[16, 17].

2.4 Virtualization

Virtualization is the major enabling technology for cloud computing. Virtualization

helps by generalizing the physical infrastructure, which is the most rigid component,

and makes it accessible as a soft component that is easier to use and manage. By doing

this, virtualization provides the dexterity needed to accelerate IT operations, and

reduces cost by increasing infrastructure utilization. By minimizing user involvement,

accelerates the process and diminishes the likelihood of human mistake.

Well-defined interfaces have some limitations. Subsystems and components de-

signed to specifications for one interface will not work with those designed for another.

For example, application programs, when distributed as compiled binaries, are bound

to a particular ISA and depend on a particular operating system interface. This lack

of inter-operability can be restricting, especially in a world of interconnected comput-

ers where it is invaluable to move software as uninhibitedly as data[19]. Virtualization

provides a method for getting around such constraints. Virtualizing a system or com-

ponent (such as a processor, memory, or an I/O device) at a given abstraction level

maps its interface and visible resources onto the interface and resources of an under-
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lying, conceivably diverse, real system. Consequently, the real system shows up as a

different virtual system or even as multiple virtual systems[19].

Virtualization is simulating a temporary or extended version of computing re-

sources such as processors, operating systems, storage, and network resources. This

virtual machine will act like a real resource as far as the consumer is concerned. Thus

it creates an abstraction between resources used for computing and the consumers

that use them.

The goals of virtualization are

• Increase utilization of shared resources

• Centralize resource management

• Improve data-center agility

• Improve testing

• Improve portability of applications

• Provide isolation

• Enable server consolidation

• Provide foundation for self management frameworks

2.5 Bin Packing Algortihms

The bin packing algorithm packs a list of items into the minimum number of possible

bins[20]. There are many instances of this problem such as two dimensional packing,

linear packing, packing by cost, packing by weight, and so on. In relation to our

project, the servers can be considered as bins and the jobs as the list of items.

Bin packing is an NP hard computational complexity problem but solutions to

very large instances of the bin packing can be produced with optimized algorithms.

NP-hard (Non-deterministic Polynomial-time hard) is a set of problems which are as

hard as the most difficult problems in NP. Many heuristics have also been created to

provide fast solutions but not necessarily optimized. We are going to use to allocate
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jobs, with their node requirements as weights, to the different servers. There are two

types of packing online and offline (prior knowledge of all the weights is required). Let

us consider that an object i requires li unit space and there are n objects. Number of

bins present are N and each bin is of the size L.

Algorithms for bin packing:

i First Fit (FF)

Packing an arriving object to the first bin (i.e. that was opened earliest) in which

it fits. If there is no such bin, open a new one and place it there.

ii Best Fit (BF)

Same as First Fit, except that when object i is to be packed, it uses the bin which

after fitting object i will have the least amount of free space left.

iii Next Fit (NF)

Packing the object arriving first in the first bin, second object in second bin, and

so on till all the objects are exhausted. If the bins are exhausted, the next object

is packed in the first if it fits else we proceed to the next bin.

iv First Fit Decreasing (FFD)

For this the objects must be known earlier and hence it is an offline packing

system. The objects are ordered in increasing order of weight and then the FF

algorithm is implemented.

Ordering should be in a way such that:

li >= li+1

1 < i < n

v Best Fit Decreasing (BFD)

For this the objects must be known earlier and hence it is an offline packing

system. The objects are ordered in increasing order of weight and then the BF

algorithm is implemented.

Ordering should be in a way such that:
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li >= li+1

1 < i < n

Packing generated by either First Fit or Best Fit uses no more than 17
10
OPT + 2

bins[20].

That by either First Fit Decreasing or Best Fit Decreasing uses no more than

11
9
OPT + 4 bins[20].

OPT refers to the number of bins given by the optimal solution.

Although FFD and BFD use lesser number of bins than plain FF or BF, they can

not be used here as they are offline bin packing algorithms.

2.6 Motivation

Cloud computing as we know by now is still evolving and growing. More and more

users are using the cloud services and hence the number of job requests is also increas-

ing sometimes linearly and sometimes exponentially. While several algorithms have

been proposed to manage the scheduling of jobs and allocation of different servers,

in separate papers, we intend to combine a job scheduling algorithm using a priority

based selection and then use an appropriate algorithm to allocate the same to differ-

ent servers. Also the increasing number of jobs result in usage of multiple servers for

faster processing but there comes times when there is a lesser load on servers. This

leads to servers entering into idle time and hence wastage of energy. So the main

challenges to overcome would be resource over provisioning, costly heat dissipation

and energy conservation. The energy conservation is done by optimal allocation. Op-

timal allocation means maximizing the number of requests that can be processed ,

and minimizing the power consumed by the requests[21].

2.7 Problem Statement

The aims of this project are to devise and implement an algorithm to schedule jobs

according to their priority list and another algorithm to assign different jobs to dif-
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ferent servers efficiently. The later should also ensure efficient energy management of

the servers.
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Chapter 3

Proposed Work

3.1 User Attributes

We have assumed that the user along with the job request sends several attributes of

the job. The attributes include

i. User

user is the user id of the person who requested the job.

ii. Time

Time is the burst time of the job (time take to execute the job)

iii. Node

Node is the number of nodes/VMs required by the job for its execution.

iv. Sub

Sub stores the time at which the job is submitted for execution

v. Type

Type defines if the job is serial or parallel processing.

vi. Cust

Cust contains the year from which the particular user started using this particular

service provider.
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3.2. Priority List

These attributes are assigned appropriate weights for the calculation of the priority

list. These weights are assumptions taken by us. The attributes are read from text

files and stored in respective arrays. Each array element contains the job number and

the attribute value, i.e., each array represents different attributes.

Example -

Figure 3.1: Sample Data

The user id is 12, burst time is 139 minutes. It requires 14 nodes for its execution.

It was submitted at 1406 hours. It is a serial processing job. And the user who

submitted this job request has been a customer since the year 2000.

3.2 Priority List

A priority list is devised in order to queue up the jobs that have to wait when there are

not enough available resources to run the same. Considering each weighted attribute

listed in section 4.1, the priority values are calculated. The weights assigned to these

jobs are linear assumptions taken by us[22].

The job requiring the least execution time is given the highest priority value while

the job requiring the most is given the least. The job requiring the least number of

nodes is given the highest priority value while the job requiring the most is given the

least. Depending on the time for which the user, with the job request, has been using

the service, a separate priority value is assigned which is more if the time is more.

Sequential jobs are given half the priority value as that given to parallel processing

jobs. All these priority values are calculated and aggregated to compile the priority

list. Finally the time of submission gives the whole model a real time scenario. Using

the submission we check which job comes after which job and at what time.
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Algorithm

To compute the priority list of job requests made by several users to the service

providers for allocation of VMs.

i Reading and insertion of the attribute values of all the job requests made to the

service provider into respective arrays.

time[0][k]← value for time (attribute 1)

node[0][k]← value for nodes required (attribute 2)

type[0][k]← value for type of job (attribute 4)

cust[0][k]← value for customer loyalty (attribute 5)

*[1][k] is used for storing the job number. This helps in synchronizing the attribute

values.

k is the kth job.

ii The attribute arrays mentioned above are sorted in the required order except for

the type values.

time[][] is sorted in increasing order.

node[][] is sorted in increasing order.

cust[][] is sorted in increasing order.

iii The priority values are assigned to each job according to their attributes and the

final value is stored into another array. The maximum priority value is assumed

to be n where n is the total number of jobs and the least priority value is 1.

priority[0][k]← priority[0][k] + pva

1 <= pv <= n

pva (priority value for a attribute) of kth job depends on the sorted list of the

attribute. In case of time, node and cust attributes the job in the first element

(having least value) gets a priority value of n, the next gets n-1 and so on till the

last job gets 1. This is repeated for each job with respect to each attribute.
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3.3. Parallel Scheduling - I

iv Stop

priority[0][k]← priority value of kth job.

Figure 3.2: Priority Value Calculation Code Snippet

3.3 Parallel Scheduling - I

Algorithm

To allocate nodes to a job request using a single server.

i Repeat steps ii, iii, iv and v till there are no more jobs left.

ii Read the number of nodes required by the incoming job request.

iii Check if required number of nodes is available in the server.

iv If available allocate the nodes if not queue it in the wait list according to decreasing

order of priority values.

v If a few nodes of the server are freed (when a job completes its execution), then

take a job out of the wait list and jump to step ii. If node requirement is not met

then wait till more nodes are available.
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3.4 Parallel Scheduling - II

Algorithm

To allocate nodes to a job request using a single server.

i Repeat steps ii, iii, iv and v till there are no more jobs left.

ii Read the number of nodes required by the incoming job request.

iii Check if required number of nodes is available in the server.

iv If available allocate the nodes if not queue it in the wait list according to decreas-

ing order of priority values and then sub-sort it according to required nodes of

individual jobs.

v If a few nodes of the server are freed (when a job completes its execution), then

take a job out of the wait list and jump to step ii. If node requirement is not met

then proceed to the next queued job.

3.5 Server Allocation

Allocation of incoming jobs is done by Bin Packing’s Best Fit algorithm. The individ-

ual servers are considered as bins which are filled by jobs (with nodes/VMs considered

to be the weights).

Best Fit is used instead of the rest three types. First Fit Decreasing (FFD) and

Best Fit Decreasing (BFD) cannot be used because they require prior knowledge of

the job requests coming in. But since this is real time the prior information cannot be

provided. Best Fit (BF) is used over Next Fit (NF), although NF has a better time

complexity (Onf (n) < Obf (nlogn) ), because BF utilizes the resources in an efficient

manner without letting any nodes sit idle for a long time. Best Fit is used over First

Fit (FF), although both have similar time complexities ( Off (nlogn) = Obf (nlogn)

), because it uses the servers efficiently by allocating the job to the server which will

have the least amount of nodes left. This in turn keeps a significant amount of servers

idle and hence saves energy.
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3.5. Server Allocation

Figure 3.3: Server Allocation Code Snippet
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Algorithm

i Read the number of nodes required by the incoming job request.

ii Find the server to which if the job is assigned for execution will leave the least

number of idle nodes.

iii If all servers are busy queue the job in the wait list.

iv If not assign the job to the selected server.

v If a few nodes of a server are freed then take a job out of the wait list and jump

to step ii.

vi Stop if there are no more queued jobs and no jobs being executed.

Figure 4.3 shows the code used to implement the selection of the server according

to Best Fit algorithm. min stores the least number of nodes left after allocation of

job and y stores the corresponding server number (step 2).

3.6 Wait List

Any job which is not allotted any server is queued into a wait list sorted in decreasing

order of priority value and then again sub-sorted in increasing order of node require-

ment. When a job completes its execution, it frees up the VMs that it had earlier

occupied. Now the algorithm checks for jobs in the waiting list. If the node require-

ment matches then that job is taken out of the wait list and a server is allocated to it

according to Best Fit algorithm. This helps in eliminating starvation as it considers

nodes with lower priority but with lower node requirements than that of the higher

priority jobs as well[23].

Figure 3.4: Code snippet for insertion of jobs into wait list
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3.6. Wait List

Fig 4.4 shows the code snippet for insertion of jobs into wait list when there are

no servers available. The lines of code above and below the insert() function are used

to maintain logs.

Figure 3.5: Code snippet for removal of a job in the wait list

Fig 4.5 is the code snippet which shows the removal of a job in the wait list which

is pointed by the pointer ptr when a server (server number: nd + 1 ) is available.

comp[0][k] represents the status of a job. If its value is 1 then its execution is completed

else if its 2 then it is being executed. The printf() statements are used to maintain

logs.
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Chapter 4

Results and Analysis

4.1 Job scheduling into a single server

First we took a data set of 15 jobs and their attributes. The jobs had different

attributes with the same submission time and same attributes with different submis-

sion times to test the boundaries of the proposed algorithms. A single server was

considered to execute the jobs with a total 15 nodes/VMs.

4.1.1 Static job scheduling

15 jobs of different attribute sets were taken but all the jobs had the same submission

time.

This was done to simulate the serial processing of the jobs just for the comparison

between serial and parallel processing.

4.1.2 Parallel scheduling - I

15 jobs of different attribute sets were taken with different submission times. The

jobs were scheduled according to their arrival times. If sufficient nodes/VMs were

not available the jobs were added to the waiting list sorted in decreasing order of

priority values. When a running job finished its execution and freed the occupied

VMs/nodes, the jobs in the waiting list were considered based only according to their

priority values. The demerits of this scheduling include starvation of lower priority

jobs and wastage of resources.

When jobs in the wait list are considered, only the job with the highest priority
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Figure 4.1: Serial Scheduling

was given importance. If that job’s node requirement was not fulfilled then the process

moved on. Now there may be jobs with lower priority value whose node requirement

could be fulfilled but those jobs were not taken out from the wait list. This not only

causes the lower priority jobs to starve but also keeps lots of nodes/VMs idle for a

long time.

4.1.3 Parallel Scheduling - II

15 jobs of different attribute sets were taken with different submission times. The

jobs were scheduled according to their arrival times. If sufficient nodes/VMs were not

available the jobs were added to the waiting list sorted in decreasing order of priority

values and then again sub-sorted in increasing order of node requirement. When a

running job finished its execution and freed the occupied VMs/nodes, the jobs in the
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Figure 4.2: Parallel Scheduling - I

waiting list were considered based according to their priority values and then the node

requirement.

This procedure solved the problem of starvation as well as decreased the idle time

of the nodes/VMs. Fig. 5.4 shows that the this procedure results in a faster execution

time than the Parallel Scheduling - I.
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Figure 4.3: Parallel Scheduling - II
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Figure 4.4: Comparing the different Scheduling processes
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4.2 Server Allocation

We took 4 different servers with 15 nodes/VMs in each server. The Best Fit Bin

Packing algorithm was used to allocate servers to different jobs. A dataset of 95

different jobs were considered with different attribute values and submission times.
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Figure 4.5: Parallel Scheduling on 4 servers

Fig. 5.5 shows the time taken (y axis) for corresponding x number of jobs (x axis).

Fig. 5.6 shows the time for which each server is free plotted against the number

of jobs.

Fig. 5.7 shows the percentage time for which each server is free plotted against

the number of jobs. The percentage is calculated over the total time of execution of

the said number of jobs.
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Figure 4.6: Total Free Time on Parallel Scheduling on 4 servers

As we can see the servers are free for a longer period of time when the job load

is less. Hence the Best Fit Bin Packing algorithm frees the servers for a longer time

hence minimizing the energy consumption and maximizing the profit.
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Figure 4.7: Percentage Free Time on Parallel Scheduling on 4 servers
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

We proposed an algorithm for scheduling jobs in Cloud Services according to a prior-

ity list and an algorithm to allocate servers to the incoming job requests. The former

algorithm used weighted attributes of the incoming jobs, created individual priority

values and used a double sorted wait list for queuing impending jobs in case of un-

availability of servers. This reduced starvation and efficiently utilized the nodes/VMs

of the individual servers. The later algorithm was based on the Best Fit algorithm

of Bin Packing. It efficiently utilized the individual servers and their nodes/VMs. It

also helped in utilizing as less number of servers as possible for maximum energy con-

servation. The proposed algorithms will show maximized profits for service providers.

5.2 Future Work

In future we intend to optimize the scheduling algorithm by including more attributes.

Then implement a complete service selection algorithm [24] which would select from

a number of service providers taking into the considerations of the user choices and

other factors such as response time, distance etc.
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