12,827 research outputs found

    Energy management in hybrid systems coupling PV and electrical storage

    Get PDF
    In this contribution the possible benefits of the integration of a storage system (ST) and a photovoltaic power plant (PV) are investigated by means of a Heuristic Rules System (HRS), used both for the determination of the optimal size of the components and for the power production scheduling. The HRS takes into account the well-known electrical constraints and aims at satisfying the electrical demand following a priority order (PV, ST, main grid). Experimental results in the case of four possible scenarios are presented and discussed

    Bayesian rules and stochastic models for high accuracy prediction of solar radiation

    Full text link
    It is essential to find solar predictive methods to massively insert renewable energies on the electrical distribution grid. The goal of this study is to find the best methodology allowing predicting with high accuracy the hourly global radiation. The knowledge of this quantity is essential for the grid manager or the private PV producer in order to anticipate fluctuations related to clouds occurrences and to stabilize the injected PV power. In this paper, we test both methodologies: single and hybrid predictors. In the first class, we include the multi-layer perceptron (MLP), auto-regressive and moving average (ARMA), and persistence models. In the second class, we mix these predictors with Bayesian rules to obtain ad-hoc models selections, and Bayesian averages of outputs related to single models. If MLP and ARMA are equivalent (nRMSE close to 40.5% for the both), this hybridization allows a nRMSE gain upper than 14 percentage points compared to the persistence estimation (nRMSE=37% versus 51%).Comment: Applied Energy (2013

    Power Quality Improvement and Low Voltage Ride through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer

    Get PDF
    © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission.This paper proposes the application of a dynamic voltage restorer (DVR) to enhance the power quality and improve the low voltage ride through (LVRT) capability of a three-phase medium-voltage network connected to a hybrid distribution generation system. In this system, the photovoltaic (PV) plant and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with a sensitive load. The WTG consists of a DFIG generator connected to the network via a step-up transformer. The PV system is connected to the PCC via a two-stage energy conversion (dc-dc converter and dc-ac inverter). This topology allows, first, the extraction of maximum power based on the incremental inductance technique. Second, it allows the connection of the PV system to the public grid through a step-up transformer. In addition, the DVR based on fuzzy logic controller is connected to the same PCC. Different fault condition scenarios are tested for improving the efficiency and the quality of the power supply and compliance with the requirements of the LVRT grid code. The results of the LVRT capability, voltage stability, active power, reactive power, injected current, and dc link voltage, speed of turbine, and power factor at the PCC are presented with and without the contribution of the DVR system.Peer reviewe

    Modular AC coupled hybrid power systems for the emerging GHG mitigation products market

    Get PDF
    Bioenergy systems particularly waste to energy (WTE) systems are increasingly gaining prominence. Market for modular hybrid energy systems (HES) combining renewable energy sources including WTEs is potentially large. Novel configuration of AC coupling for HES is discussed. Emerging opportunities for market development of hybrid energy systems under green house gas mitigation initiatives particularly Kyoto flexibility mechanisms is analysed

    Small-Scale Compressed Air Energy Storage Application for Renewable Energy Integration in a Listed Building

    Get PDF
    In the European Union (EU), where architectural heritage is significant, enhancing the energy performance of historical buildings is of great interest. Constraints such as the lack of space, especially within the historical centers and architectural peculiarities, make the application of technologies for renewable energy production and storage a challenging issue. This study presents a prototype system consisting of using the renewable energy from a photovoltaic (PV) array to compress air for a later expansion to produce electricity when needed. The PV-integrated small-scale compressed air energy storage system is designed to address the architectural constraints. It is located in the unoccupied basement of the building. An energy analysis was carried out for assessing the performance of the proposed system. The novelty of this study is to introduce experimental data of a CAES (compressed air energy storage) prototype that is suitable for dwelling applications as well as integration accounting for architectural constraints. The simulation, which was carried out for an average summer day, shows that the compression phase absorbs 32% of the PV energy excess in a vessel of 1.7 m(3), and the expansion phase covers 21.9% of the dwelling energy demand. The electrical efficiency of a daily cycle is equal to 11.6%. If air is compressed at 225 bar instead of 30 bar, 96.0% of PV energy excess is stored in a volume of 0.25 m3, with a production of 1.273 kWh, which is 26.0% of the demand

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management

    Get PDF
    Electricity load forecasting, optimal power system operation and energy management play key roles that can bring significant operational advantages to microgrids. This paper studies how methods based on time series and neural networks can be used to predict energy demand and production, allowing them to be combined with model predictive control. Comparisons of different prediction methods and different optimum energy distribution scenarios are provided, permitting us to determine when short-term energy prediction models should be used. The proposed prediction models in addition to the model predictive control strategy appear as a promising solution to energy management in microgrids. The controller has the task of performing the management of electricity purchase and sale to the power grid, maximizing the use of renewable energy sources and managing the use of the energy storage system. Simulations were performed with different weather conditions of solar irradiation. The obtained results are encouraging for future practical implementation

    Optimal household energy management and participation in ancillary services with PV production

    Get PDF
    The work presented in this paper deals with a project aiming to increase the value of photovoltaic (PV) solar production for residential application. To contribute to the development of the new functionalities for such system and the efficient control system to optimize its operation, this paper defines the possibility for the proposed system to participate to the ancillary services, particularly in active power service provider. This service of PV-based system for housing application, as it does not exist today, has led to a market design proposition in the distribution system. The mathematical model for calculating the optimal operation of system (sources, load, and the exchange power with the grid) results in a linear mix integer optimization problem where the objective is to maximize the profit obtained by participating to electricity market. The approach is illustrated in an example study case. The PV producer could benefit from its intervention on balancing market or ancillary services market despite of the impact on the profit of several kinds of uncertainty, as the intermittence of PV source.energy management ; ancillary services ; PV production ; household application
    • …
    corecore