686 research outputs found

    Design Of Rectenna With Improved RF-To-DC Power Conversion Efficiency For RF Energy Harvesting

    Get PDF
    This thesis presents novel techniques for the design of rectenna for RF energy harvesting which allow for the realization of wireless microwave energy transfer. Energy harvesting is a rapidly growing area in many scientific and engineering related fields due to the need for finding solutions to the world’s power issues. Based on the previous works, there are many limitations and drawbacks exists in currently used technique such as low RF-to-DC power conversion efficiency or increase in the number of antenna elements enlarges the overall aperture size of the rectenna, the resulting devices are large and more difficult to install which limits the potential of further enhancement in the conversion efficiency. Therefore, the overall objective of this research work is to develop an effective rectenna for RF energy harvesting system. These rectenna have an advantage of high gain and high efficiency properties which optimized the overall rectenna performance. All the rectenna designs were developed based on stacked air-gap rectenna technology by integrating the rectifying circuit with the high gain antenna. In order to validate the concept, all rectenna designs were manufactured and measured. The experimental results show excellent agreement with the simulated performance. Both antennas and rectifiers have been designed by using Computer Simulation Technology (CST) and Advance Design System (ADS) respectively. A low cost 4.6 permittivity FR4 substrate has been used in the fabrication process. For rectifier, the highest output voltage that can be achieved is 14.52 V when the input power is at 30 dBm. On the other hand, the most optimized antenna amongs all can achieved gain of 9.01 dB and return loss of more than -22 dB. The highest measured RF-to-DC conversion efficiency of the optimized rectenna design is 85% when the input power is 20 dBm applied to the circuit. The main benefit of the rectenna designs are high gain, high RF to DC power conversion efficiency, high DC output voltage as well as being able to easily integrate with other planar devices at a low cost and using standard printed circuit board process. This new class of rectenna is considered suitable for applications, particularly where the gain can be tolerated and the RF-to-DC power conversion efficiency is very important, such as in the case of agriculture and health sensors of wireless sensor networ

    Matching Network Elimination in Broadband Rectennas for High-Efficiency Wireless Power Transfer and Energy Harvesting

    Get PDF
    Impedance matching networks for nonlinear devices such as amplifiers and rectifiers are normally very challenging to design, particularly for broadband and multiband devices. A novel design concept for a broadband high-efficiency rectenna without using matching networks is presented in this paper for the first time. An off-center-fed dipole antenna with relatively high input impedance over a wide frequency band is proposed. The antenna impedance can be tuned to the desired value and directly provides a complex conjugate match to the impedance of a rectifier. The received RF power by the antenna can be delivered to the rectifier efficiently without using impedance matching networks; thus, the proposed rectenna is of a simple structure, low cost, and compact size. In addition, the rectenna can work well under different operating conditions and using different types of rectifying diodes. A rectenna has been designed and made based on this concept. The measured results show that the rectenna is of high power conversion efficiency (more than 60%) in two wide bands, which are 0.9-1.1 and 1.8-2.5 GHz, for mobile, Wi-Fi, and ISM bands. Moreover, by using different diodes, the rectenna can maintain its wide bandwidth and high efficiency over a wide range of input power levels (from 0 to 23 dBm) and load values (from 200 to 2000 Ω). It is, therefore, suitable for high-efficiency wireless power transfer or energy harvesting applications. The proposed rectenna is general and simple in structure without the need for a matching network hence is of great significance for many applications

    A Novel Transparent UWB Antenna for Photovoltaic Solar Panel Integration and RF Energy Harvesting

    Get PDF
    A novel transparent ultra-wideband antenna for photovoltaic solar-panel integration and RF energy harvesting is proposed in this paper. Since the approval by the Federal Communications Committee (FCC) in 2002, much research has been undertaken on UWB technology, especially for wireless communications. However, in the last decade, UWB has also been proposed as a power harvester. In this paper, a transparent cone-top-tapered slot antenna covering the frequency range from 2.2 to 12.1 GHz is designed and fabricated to provide UWB communications whilst integrated onto solar panels as well as harvest electromagnetic waves from free space and convert them into electrical energy. The antenna when sandwiched between an a-Si solar panel and glass is able to demonstrate a quasi omni-directional pattern that is characteristic of a UWB. The antenna when connected to a 2.55-GHz rectifier is able to produce 18-mV dc in free space and 4.4-mV dc on glass for an input power of 10 dBm at a distance of 5 cm. Although the antenna presented in this paper is a UWB antenna, only an operating range of 2.49 to 2.58 GHz for power scavenging is possible due to the limitation of the narrowband rectifier used for the study

    Signal and System Design for Wireless Power Transfer : Prototype, Experiment and Validation

    Get PDF
    A new line of research on communications and signals design for Wireless Power Transfer (WPT) has recently emerged in the communication literature. Promising signal strategies to maximize the power transfer efficiency of WPT rely on (energy) beamforming, waveform, modulation and transmit diversity, and a combination thereof. To a great extent, the study of those strategies has so far been limited to theoretical performance analysis. In this paper, we study the real over-the-air performance of all the aforementioned signal strategies for WPT. To that end, we have designed, prototyped and experimented an innovative radiative WPT architecture based on Software-Defined Radio (SDR) that can operate in open-loop and closed-loop (with channel acquisition at the transmitter) modes. The prototype consists of three important blocks, namely the channel estimator, the signal generator, and the energy harvester. The experiments have been conducted in a variety of deployments, including frequency flat and frequency selective channels, under static and mobility conditions. Experiments highlight that a channeladaptive WPT architecture based on joint beamforming and waveform design offers significant performance improvements in harvested DC power over conventional single-antenna/multiantenna continuous wave systems. The experimental results fully validate the observations predicted from the theoretical signal designs and confirm the crucial and beneficial role played by the energy harvester nonlinearity.Comment: Accepted to IEEE Transactions on Wireless Communication

    RF Power Harvesting Rectenna

    Get PDF
    Sustainability is one of today\u27s primary engineering objectives. This principle involves system design that minimizes environmentally harmful energy emissions and resource consumption, and maximizes renewable energy practices [1]. Communication antennas transmit wireless signals that can be converted into usable energy. The Rectenna system described in this report, shown in Figure 1, was designed to accomplish this energy conversion, with -5dBm (316µW) minimum power at the rectifier input. Since typical ambient signal power is in the -70dBm (0.1nW) range, the proposed system could only convert passive, relatively high-power microwave band AC signals to DC. The Rectenna system was designed for 1.9GHz signal reception; however, the greatest ambient 1.9GHz signal power measured in Cal Poly’s Microwave Lab was in the -75dBm (31pW) to -70dBm (100pW) range, shown in Table 1. The team provided an external 1.9GHz source (-20dBm to 3dBm) to verify the design. An inset-fed microstrip patch is used as an energy harvesting antenna; the single patch was then arrayed into a 2x2 planar configuration. The designed patch antenna array has a 3dB larger gain, and 1% increased frequency bandwidth compared to the single patch. However, it is unable to harvest sufficient RF power for energy storage. When capturing multiple-source ambient RF signals, an omnidirectional antenna (captures energy in all directions) should be implemented, rather than a directional patch antenna array. The Greinacher rectifier [2] converts RF energy into usable DC power which is multiple times the input RF peak voltage. Simulations show the Greinacher rectifier output voltage is a function of the number of stages and peak input voltage. The antenna and rectifier are matched with |S11| less than -21dB and -5dB, respectively, at 1.9GHz to mitigate power losses. A high-efficiency Main Boost Converter (BQ25504) increases rectifier output DC voltage to 3.1V for charge storage on a capacitor (battery). A Self-Oscillating Boost Converter (SOBC) handles startup when the capacitor is initially discharged. A passive switching circuit was developed to enable source-free switching from the SOBC to the Main Boost Converter. The system yields 29% and 12% maximum power efficiency with -1dBm (794µW) and -5dBm (316µW) input power to the rectifier, respectively

    Rectifier Circuit Designs for RF Energy Harvesting applications

    Get PDF
    RF energy scavenging, commonly referred to as RF energy harvesting, is the capability of collecting ambient RF energy from antennas to supply power to electronic devices. The rectifier circuit is the key component of wireless energy harvesting system. Therefore, the development of efficient and compact rectifier circuit has become recently a vital research topic. This paper presents a state of the art and review of the recent designs of microstrip rectifier circuit used for RF energy harvesting applications at 2.45 GHz and 5.8GHz

    A High-Efficiency Broadband Rectenna for Ambient Wireless Energy Harvesting

    Get PDF
    This paper presents a novel broadband rectenna for ambient wireless energy harvesting over the frequency band from 1.8 to 2.5 GHz. First of all, the characteristics of the ambient radio-frequency energy are studied. The results are then used to aid the design of a new rectenna. A novel two-branch impedance matching circuit is introduced to enhance the performance and efficiency of the rectenna at a relatively low ambient input power level. A novel broadband dual-polarized cross-dipole antenna is proposed which has embedded harmonic rejection property and can reject the second and third harmonics to further improve the rectenna efficiency. The measured power sensitivity of this design is down to -35 dBm and the conversion efficiency reaches 55% when the input power to the rectifier is -10 dBm. It is demonstrated that the output power from the proposed rectenna is higher than the other published designs with a similar antenna size under the same ambient condition. The proposed broadband rectenna could be used to power many low-power electronic devices and sensors and found a range of potential applications
    • …
    corecore