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Abstract

Sustainability is one of today's primary engineering objectives. This principle involves
system design that minimizes environmentally harmful energy emissions and resource
consumption, and maximizes renewable energy practices [1]. Communication antennas
transmit wireless signals that can be converted into usable energy. The Rectenna
system described in this report, shown in Figure 1, was designed to accomplish this
energy conversion, with -5dBm (316uW) minimum power at the rectifier input. Since
typical ambient signal power is in the -70dBm (0.1nW) range, the proposed system
could only convert passive, relatively high-power microwave band AC signals to DC.
The Rectenna system was designed for 1.9GHz signal reception; however, the greatest
ambient 1.9GHz signal power measured in Cal Poly’s Microwave Lab was in the
-75dBm (31pW) to -70dBm (100pW) range, shown in Table 1. The team provided an
external 1.9GHz source (-20dBm to 3dBm) to verify the design.

An inset-fed microstrip patch is used as an energy harvesting antenna; the single patch
was then arrayed into a 2x2 planar configuration. The designed patch antenna array
has a 3dB larger gain, and 1% increased frequency bandwidth compared to the single
patch. However, it is unable to harvest sufficient RF power for energy storage. When
capturing multiple-source ambient RF signals, an omnidirectional antenna (captures
energy in all directions) should be implemented, rather than a directional patch antenna
array.

The Greinacher rectifier [2] converts RF energy into usable DC power which is multiple
times the input RF peak voltage. Simulations show the Greinacher rectifier output
voltage is a function of the number of stages and peak input voltage. The antenna and
rectifier are matched with |S,,| less than -21dB and -5dB, respectively, at 1.9GHz to
mitigate power losses. A high-efficiency Main Boost Converter (BQ25504) increases
rectifier output DC voltage to 3.1V for charge storage on a capacitor (battery). A
Self-Oscillating Boost Converter (SOBC) handles startup when the capacitor is initially
discharged. A passive switching circuit was developed to enable source-free switching
from the SOBC to the Main Boost Converter. The system yields 29% and 12%
maximum power efficiency with -1dBm (794pW) and -5dBm (316uW) input power to the
rectifier, respectively.
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Table 1: Ambient RF Signal Sample, [February 2016]

Measured Frequency Measured Power Level (dBm)
(MHz)

480 -72

756 -79

950 =77

1900 -71

Boost Converter

II Main Boost_ .

Converter
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Figure 1: Rectenna Block Diagram
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Antenna Design, Analysis, and Test

The patch antenna has a low profile, simple design, and straightforward manufacturing. The
antenna was designed in High Frequency Structure Simulator (HFSS) [3] and fabricated using

Cal Poly’s Protomat S62 precision mill [4]. The specifications include 5dB gain, VSWR less than
2, and 1% minimum frequency bandwidth.

The board was milled on 30 mil height Rogers RO3035 Duroid with a 3.5 dielectric constant [5].
The patch is inset-fed to allow input impedance tuning via x,, y, dimensions (see Fig. 2), and
feed length parameters. Single patch dimensions were calculated using the following relations

[6].
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Figure 2: Inset-Fed Patch Antenna

The initial antenna was designed for 1.9GHz operation. The x,, y,, and feed length dimensions
were tuned in HFSS to control the antenna input impedance for impedance matching. HFSS
allows patch antenna parameter optimization and tuning to meet required specifications.
“Tuning” refers to controlling individual patch dimensions until the desired antenna parameters
are obtained. For example, the patch length was extended to minimize |S,,| at 1.9GHz in Figure

3. Increasing the patch length decreases the resonant frequency. Using equations 1-3, the
calculated antenna parameters are shown in Table 2.
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Table 2: Calculated Patch Antenna Parameter Values

Width, W Length, L | Feed Length, L. gr(eff)
(mils) (mils) (mils)
2072.11 1646.53 28.78 3.32

A single inset-fed patch model was created in HFSS; HFSS optimetrics was used to minimize

antenna |S,,| in Figure 3. HFSS optimized antenna dimensions using a quasi-Newton method.
The simulated -10dB bandwidth is 23MHz (1.2%).
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Figure 3: Single Patch Simulated |S,,| (dB) vs. Frequency (GHz)

The optimized patch 3D polar gain plot appears in Figure 4; the theta sweep E-plane co-pol
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radiation pattern appears in Figure 5.
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Figure 4: Single Patch 3D Polar Gain Plot (Z-Axis Normal to Patch)
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Figure 5: Single Patch Theta Sweep Radiation Pattern (dB), Phi = 0°, f = 1.9GHz
(E-Plane, Co-Polarized)
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The optimized patch model in HFSS appears in Figure 6.

L] O -

Figure 6: Final Optimized Single Patch

The simulation layout was converted to a Gerber file for fabrication on Cal Poly’s milling
machine. Figure 7 shows the final manufactured patch.

Figure 7: Manufactured Patch Antenna

The antenna’s measured |S,,| frequency response is shown in Figure 8.
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Figure 8: Patch Antenna, Original Design, Measured |S,,| vs Frequency

By increasing the patch length, the resonant frequency was tuned to 1.9GHz. Figure 9 shows
the tuned patch antenna with hot glue spheres to maintain copper tape position. Figure 10
shows the tuned patch |S,,| frequency response with 80MHz (4.2%) -10dB bandwidth.

Figure 9: Tuned Patch Antenna
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Figure 10: Tuned Patch Antenna Measured |S,,| (dB) vs. Frequency (MHz)

The patch antenna was characterized in Cal Poly’s anechoic chamber. Patch antenna
orientation is shown in Figure 11.
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Figure 11: Patch Antenna Orientation and Coordinate System
in Cal Poly Anechoic Chamber

The measured radiation patterns are shown in Figure 12. “E co-pol” and “H co-pol” refer to

E-plane and H-plane scanning, respectively. Transmit horn and receive patch antenna
polarizations are aligned.
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Figure 12: Patch Antenna Gain Measurements
Each pattern’s half-power beamwidth (HPBW) is the angular span between half-power angles

and around the peak radiation direction. Antenna gain is calculated using (4) where HPBW_E
and HPBW _H are the E-plane and H-plane HPBWs in degrees from Figure 12 [6], respectively.

Table 3: Approximate Antenna HPBW Measurements and Gain

Measured HPBW¢ (°) 85

Measured HPBW,, (°) 70

Calculated Antenna Gain (dB) 7
41,253

Antenna Gain = HPBW, =~ HPBW, (4)

The optimized single patch antenna was duplicated to a 2x2 array for increased gain and
comparison to the single patch. Figure 13 shows the initial microstrip inset-fed patch antenna
array design. Wilkinson dividers were considered for signal combining; however, board space
was exceeded. Instead, traces were combined and optimized in HFSS for 50Q input impedance.
Received signals from each patch antenna must travel identical distances to the detection point
for in-phase combining. All patches also required a center-center spacing of a wavelength, and
optimal in-phase combining. Figure 14 shows the initial planar array HFSS model.
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Figure 13: Patch Antenna Planar Array Initial Design
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Figure 14: HFSS Patch Antenna Planar Array

This model was simulated in HFSS, and Figures 15 and 16 show the antenna array |S,,| and 3D
radiation pattern, respectively. The simulated -10dB bandwidth is 20MHz (1.05%).
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Figure 15: 60mil Dielectric Height Patch Antenna Array Simulated |S,,|
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Figure 16: 60mil Dielectric Height Patch Antenna 2x2 Array Simulated 3D Radiation
Pattern

The simulation results are summarized in Table 4.

Table 4: Simulated Antenna Array Results @ 1.9GHz

Input Impedance (Q) 52.0 +j0.3
|S44| (dB) -28.1
VSWR 1.1
Gain (dB) 10.5

The patch array was also simulated on Rogers RO3035 30-mil height dielectric (€, = 3.5) for
comparison. Figure 17 shows the new simulated 30-mil dielectric height patch antenna array
|S,4]. The -10dB bandwidth is 6MHz (0.3%).
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Figure 17: 30mil Dielectric Height Patch Antenna Array Simulated |S,,|

The 30mil dielectric height array simulation results at 1.9GHz are shown in Table 5.

Table 5: Simulated 30mil Dielectric Height (€ = 3.5) Antenna Array Results @ 1.9GHz

Dielectric Height (mils) 30 60
Input Impedance (Q) 425 +j0.4 52 +j0.1
[S,,l (dB) -12.3 -28.0
VSWR 1.64 1.08
Gain (dB) 6.9 10.5
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The antenna array was milled on 30mil dielectric height Rogers Duroid 3035 (€, = 3.5). The
resonant frequency was decreased by increasing all patch lengths, shown in Figure 18. Hot glue
spheres maintain copper tape position. Copper tape tuning and Duroid flexibility increases
substrate bending sensitivity. Thus, the antenna was re-tuned by applying copper tape only to
the feed line, resulting in an antenna less-sensitive to substrate bending in Figure 19. Figure 20
shows the newly tuned |S,,|. The measured -10dB bandwidth is 100MHz (5.2%).

Figure 18: 30mil Dielectric Height Patch Antenna Array Initial Tuning

Figure 19: 30mil Dielectric Height Patch Antenna Array Final Tuning
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Figure 20: 30mil Dielectric Height Patch Antenna Array Measured |S,,|

The antenna was characterized in Cal Poly’s anechoic chamber. Figures 21-24 show final 30mil
dielectric height patch array E- and H-plane, co- and cross-polarized radiation patterns. The E-
and H-plane co-polarized main beam peaks are offset due to an alignment issue in the anechoic

chamber.
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Figure 21: Measured 30mil Dielectric Height Patch Array E-Plane Co-Pol Radiation
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Figure 22: Measured 30mil Dielectric Height Patch Array H-Plane Co-Pol Radiation
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Figure 23: Measured 30mil Dielectric Height Patch Array E-Plane Cross-Pol Radiation
Pattern
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Figure 24: Measured 30mil Dielectric Height Patch Array H-Plane Cross-Pol Radiation
Pattern
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Rectifier Design, Analysis, and Test

Theory

Rectifiers convert RF power to DC. Single diode and full-wave bridge rectifiers were considered,
but the proposed system uses a cascaded Greinacher Rectifier configuration, see Figure 25.
Greinacher rectifiers can boost 100mV range input voltages to 200mV or greater by increasing
the number of cascaded stages.

Clamping Circuit Peak Detector
e T ,\/SMS7630 _ '
AL NN Vout
' e
V5! sms7630 c
. -

Figure 25: Greinacher Rectifier with Schottky Diodes

The Greinacher rectifier converts AC input voltage into DC voltage twice the input peak voltage.
The Greinacher rectifier leverages both the clamping and peak detecting circuits, see Fig. 25
above.

Vivin)

o

Vs

T SMS7630 o o ks e gl s e A o e o o —~
<7 VAN i
a) % b)

Figure 26: a) Clamping circuit schematic and b) waveforms illustrating circuit
functionality, with dashed and solid lines indicating input and output DC offset
respectively.
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The clamping circuit applies a DC offset to the input signal. When the waveform approaches its
first negative cycle, the diode conducts and the source charges the capacitor’s right plate to the
source voltage minus the diode forward voltage V, while the output remains at -V,. When the
input voltage increases, the source and capacitor voltages add together at the output. Thus, the
output maximum is the peak source voltage V; plus the capacitor voltage; 2V, - V.. Fora 1V,
input voltage and 100mV diode forward voltage, Figure 26b shows the output waveform with a
0.9V DC average and 1.89V peak.

SMS7630
[~
L
Vs Cc

O 7

a) % b)

Figure 27: a) Peak detector circuit and b) waveform illustrating circuit functionality.

The peak detector circuit attempts to maintain a constant input peak voltage. On the positive
cycle, after the input increases beyond the diode forward voltage, the diode conducts and the
source charges the capacitor. When V, =V, the output voltage is V - V.

As the input decreases, the diode becomes reversed biased. While reversed biased, leakage
current flows through the diode from the capacitor. Capacitor charging and discharging cycles
create DC output ripple.

Figure 28 shows the waveforms at the Greinacher rectifier input, at the clamping circuit output
(node A), and at the rectifier output (see Figure 25). The clamping circuit introduces the V - V
DC offset at node A. The peak detector maintains the node A peak voltage. The final
Greinacher rectifier voltage is defined by (5), where V is the peak source voltage, and Vj is the
diode forward voltage. To maximize output voltage, V, must be minimized; hence, Schottky
diodes were used.

Vout = 2(VSP - VD) (5)
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Figure 28: Greinacher Rectifier waveforms at the input, the clamping circuit output (Node
A), and the output.

To increase the output voltage, multiple stages can be cascaded. A two-stage cascade is shown
in Figure 29; the circuit pattern is identified and extended to N cascaded stages.

c B SMS7630 (3
— =1
@ @ I +
SMS$7630 c
C Al sms7e30 | w
|l . ‘: .® Vout
=% sms7e30 |c

E. = " "
Figure 29: Two-Stage Cascaded Greinacher Rectifier

This configuration is summarized below - reference Figure 29 schematic.
1. Node A signal becomes the second stage input.

2. First stage output is the second stage ground reference.

3. Node B adds 2V, - V, offset to node A.
4. The second peak detector rectifies the node B signal.

The output voltage relative to the first stage output is 2*(V, - V). However, if the overall output
is considered between the second stage output and circuit ground, the first and second stage
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output voltages add. The individual stage output voltages result in an overall output of 4*(V; -
Vp).

The output voltage for N stages, neglecting ripple, is defined by (6), where V is the peak input
voltage, and V,, is the diode forward voltage.

Vout(N) = 2N(V5P - VD) (6)

Simulation

A single-stage rectifier is not sufficient for -75dBm (31.6pW) to -70dBm (100pW) range input
power levels; thus, cascaded stages was required. Fewer stages reduces cost and size, thus a
maximum seven-stage system was tested. Initial simulations were performed at 1kHz to verify
circuit operation while ignoring transmission line effects. Output voltages were measured for
each cascaded stage to verify with equations. This simulation used a Schottky diode model
default in SPICE with a 100mV forward bias voltage. The capacitor values are 1uF and 100uF.
The input voltage was a 1Vpp, 0V offset, 1kHz sine wave. Results are shown in Table 6.

Table 6: SPICE Calculations, Rectifier Performance vs. Number of Stages, Sinusoidal
Input: 1V, 0V offset, 1kHz

Number |Calculated C=1uF C =100uF

ofstages| Vou (V) V..« Unloaded (V) | Ripple amplitude (mV) [V, Unloaded (V) | Ripple amplitude (mV)
1 1.80 1.81 26.13 1.82 0.24
2 3.60 3.56 82.74 3.64 0.80
3 5.40 5.11 169.23 5.46 1.67
4 7.20 6.33 284.61 7.28 2.84
5 9.00 7.08 429.12 9.09 4.35
6 10.80 7.26 600.78 10.91 6.17
7 12.60 6.74 794.84 12.73 8.31

Ripple increases with increasing number of stages and decreasing capacitance. Each stage’s
capacitance combines in series. Series capacitors reduce capacitance, reducing the RC time
constant; thus, output ripple increases. The maximum voltage cannot exceed 2N(V, - V). The
signal oscillates about a value below V.. Thus, the output RMS voltage (DC output) value
decreases. When the capacitors are all increased from 1uF to 100uF, the ripple was reduced by
2 orders of magnitude. Output voltages measured with 100uF capacitors differed by 1.03%
maximum from theoretical calculations. Increasing the capacitance improves output voltage
performance, but the circuit response speed is reduced.
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Another consideration is the time required to reach maximum output voltage; rectification time.
Figure 30 shows ripple and rectification time for 1uF and 100uF system capacitances.

AR RTINS e
AN d
AN

N

Figure 30: Greinacher Rectifier Ripple and rectification time for a 1kHz sine wave input
with 100uF capacitors (green) and 1uF capacitors (blue).

V,,r increases to the expected voltage 100 times faster than V¢, but with about 100 times the
ripple. Rectification time is important because it reduces the system response speed.

The Greinacher rectifier output resistance affects its voltage sourcing capability. The circuit has
an output resistance ranging from 6kQ to 10kQ, and is nonlinear and load-dependent. Diodes
have nonlinear dynamic resistance, increasing impedance matching difficulty. Output voltage
ripple originates from leakage current flowing from the capacitor to the load. The RC time
constant is inversely proportional to ripple amplitude. This ripple is increased further with more
stages, due to the reduced overall circuit capacitance with multiple stages. The load resistance
cannot be increased without dissipating additional power. To reduce the ripple without
increasing the resistance, the circuit capacitor values were increased to 100uF. Increasing
capacitance increases the R-C time constant and rectification time. Figure 31 shows a
two-stage rectifier output with 1uF capacitors for 500Q (V500), 40kQ (V,,u0k), @Nd open circuit
(Voutopen) l0ad and with 100pF for a 500Q load (V500 compensated). The 100uF capacitor,
500Q load configuration shows compensation for decreased R-C time constant.
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Figure 31: Two-Stage Greinacher Rectifier showing increased ripple under different
loading with a 1V, 1kHz input sine wave.

Voltage ripple is inversely proportional to load resistance, as shown in Figure 31. However, with
the 500Q load, the average voltage collapses to about 0.35V. The clamping capacitor did not
maintain charge, thus the clamping circuit did not operate. To compensate, 100uF capacitors
were used to reduce ripple and allow clamping.

Simulations at 1.9GHz were performed using Keysight's ADS software. Simulations include the
SMS7630 diode SPICE model. Capacitor values are decreased six orders of magnitude from
the 1kHz design to accommodate the 1.9GHz operating frequency. The 1.9GHz system was
initially designed with 100pF capacitors; the final design uses 100nF to reduce ripple. Large
capacitors reduce the system’s rectifying speed, but at RF frequencies, the output voltage
reaches steady-state conditions in less than a second.

The seven-stage rectifier's simulated |S,,| is shown in Figure 32.
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Figure 32: Seven-Stage Greinacher Rectifier simulated |S,,|

Since the |S,,| is greater than -10dB (VSWR > 2) at 1.9GHz, a matching network was designed
to match the rectifier to the antenna’s 50Q output impedance. A balanced single-stub matching
network (Figure 33) was selected to allow fine-tuning. Using the ADS optimizer, the stub and
line lengths were adjusted to minimize |S,,| at 1.9GHz. The optimized |S,,| is shown in

Figure 34.

MLOC
T2
Subst="MSub1"

W=Wstub mil
L=Lstubmil
+4° Tam MUIN MCROSO MLIN
Term TL4 Cros1 L1
Num=1 Subst="MSub1" Subst="MSub1" . Subst="MSub1"
7250 Ohm W=wsomil WA=W50mil W=Wiin mil
= L=L1 mil W2=Wlin mil L=Llin mil
C C W3=Wstub mil
Wd=Wstub mil
— MLOC
L3
Subst="MSub1"
W=Wstub mil
L=Lstub mil

Figure 33: Greinacher Rectifier Balanced single-stub matching network.
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Figure 34: Seven-Stage Greinacher Rectifier simulated |S,,| with the matching network.

The final board layout, shown in Figure 35, includes the matching network on the left, and solder
pads for diodes and capacitors on the right. Small copper pads reduce the distance between the
lumped components to minimize reflections between components. This design was fabricated
using an LPKF Protomat S62 milling machine. SMS7630 Schottky diodes with 150mV nominal
forward voltage and 26 GHz maximum operating frequency are used for this circuit.

T T T

Figure 35: Greinacher Rectifier board layout.
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Measurements

DC voltage and |S,,| measurements were taken for each cascaded stage for comparison. Stub
length tuning was accomplished with copper tape and a utility (X-Acto) knife. Figure 36 shows
the measured single-stage Greinacher rectifier DC voltage in millivolts vs. frequency at a 0dBm
(1mW) input power level.
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= 25
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Frequency (GHz)

Figure 36: Single-Stage Rectifier Measured DC Output Voltage vs. Frequency at 0dBm
Input Power.

The untuned system produced a peak voltage at 2.2GHz instead of 1.9GHz with a 90MHz
bandwidth. A |S,| less than -10dB indicates more than 90% of the captured power reaches the
rectifier, thus increasing the output voltage. The |S,,| is shown in Figure 37.
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Frequency (GHz)
Figure 37: Untuned and Tuned single-stage Greinacher rectifier |S,,|

Tuned and untuned rectifier |S,,| at 1.9GHz are tabulated in Table 7. With additional time, |S,,|
less than -10dB could be achieved. This result is consistent with the simulated DC voltage plots,
since the rectifier output voltage increases with reduced |S,,|. Measured DC voltage vs. input
power level is shown in Figure 38.
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Table 7: Measured Rectifier |S,,| Before and After Tuning at 1.9GHz

Untuned |S,,]| -0.43dB
Tuned |S,,| -4.99dB
6.0 —— Untuned
—— Tuned
45
=
oy
% 3.0
=
Q
Q
1.5
0.0
-40 -30 -20 -10 0 10
Input Power (dBm)

Figure 38: Single-Stage Greinacher Rectifier DC Voltage vs Input Power at 1.9GHz.

A two-stage cascade output voltage at 1.9GHz increased by a factor of 1.46 after tuning with
copper tape.
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Figure 39: Two-Stage Greinacher Rectifier, DC Output Voltage vs Frequency, 0dBm Input
Power
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Figure 40: Two-Stage Untuned and Tuned Greinacher Rectifier |S,,|
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Figure 41: Two-Stage Greinacher Rectifier DC Voltage vs Input Power at 1.9GHz.

A three-stage Greinacher rectifier was constructed; however, a |S,,| of -10dB was difficult to

achieve with board footprint constraints. The best-case |S,,| response with the current matching
network appears in Figure 42.
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b
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Frequency (GHz)
Figure 42: Three-Stage Untuned and Tuned Greinacher Rectifier |S ;|

Voltage measurements were inferior to the two-stage rectifier, because the two-stage rectifier
|S,4] at 1.9GHz was about 7dB larger. DC voltage vs frequency and input power is shown in
Figures 43 and 44.

4.8 —— Untuned
4.2 = Tuned

DC Voltage (V)
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Figure 43: Three-Stage Greinacher Rectifier DC Output Voltage vs Frequency at 0dBm
Input Power.
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Figure 44: Three-Stage Greinacher Rectifier DC Voltage vs Input Power at 1.9GHz.

A two-stage rectifier was designed and fabricated. Matching performance was unacceptable for
three or more cascaded stages due to board footprint limitations.

Figure 45 shows the fabricated circuit output DC voltage vs. input power at 1.9GHz and 500Q
load, the boost converter input resistance.
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Figure 45: Two-stage Greinacher Rectifier DC Voltage vs Input Power; 1.9GHz with 500Q
load.

The rectifier response (Figure 45) resembles the unloaded case (Fig. 41), but requires -3dBm
input power to output the minimum 200mV required by the boost converter. This is greater than
ambient power ranging from -75dBm to -70dBm; thus this system cannot be used for ambient
RF energy harvesting. A possible alternative for ambient RF energy harvesting includes placing
an amplifier before the rectifier; however, this could reduce the overall system efficiency at

higher power levels.

To improve future systems, it is suggested to characterize rectifier S-parameters prior to
matching network design. To account for solder and final component installation, it is
recommended to design the matching network from measured rectifier S-parameters. The
matching network could be connected to the rectifier via SMA connectors
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Boost Stage Design, Analysis, and Test

The BQ25504 high efficiency boost converter [7] was chosen to boost 80mV to 800 mV input
voltages to 3.1V output applied to a 470uF storage capacitor. The 3.1V output can turn on LEDs
or power a small microcontroller.

The main boost converter (BQ25504) requires 330mV input voltage when driving a discharged
battery; i.e.: cold-start operation. However, if connected to a charged battery, only 80mV is
required. A Self-Oscillating Boost Converter (SOBC) charges the battery to a 2.89V threshold
before switching to the main boost converter. If the battery voltage decreases below a 2.44V
threshold, the SOBC restarts battery charging.

Passive Switch

""" V_bat_ok |
in BQ25S04
H ]
T RINTE, S e e et
(==t
__ NMoS |
Battery
Vin 470 uF
P_JFET
ZM5116
:
i SOBEC out | ——

Figure 46: Block Diagram with Passive Switch Implementation

A passive switching network, Figure 46, dictates which boost converter is active. The network
accepts input DC voltage from the rectifier and uses the BQ25504’s V_BAT_OK flag as the
switch control signal.

The V_BAT_OK flag is produced by the main boost converter which senses the battery voltage.
The V_BAT_OK flag is set high or low to select the Main Converter or SOBC, respectively.

This window is set by a resistive divider connected to the V_BAT_OK_HYST (Equation 7) and

V_BAT_OK_PROG (Equation 8) pins on the BQ25504. Figure 47 shows the BQ25504
schematic with the resistive divider. The hysteretic window is shown in Figures 48 and 49.

Senior Project Design: RF Energy Harvesting Rectenna



34

s )

Battery

470uF

C ———
——|anF ® D] [1s] " [1a] Tag]

13
LBST VSTOR VBAT  VSS

E VES AVSS |12
l— [ VBAT_OK

zlwh._ oc VBAT _DKE >

bq25504 Rox1 l
4,42 M0

Bvcc_sm.w on_vwc@ ==
Rok2
Tl OK_HYSTIE 422M0

OT_PROG VBAT OV [V VBAT LUV
s o1 [+] Te]

Figure 47: Main Boost Converter Schematic

( R +R
VBAT_OK_HYST = VBIAS| 1 + ~02 = "010 -
s 14 .
VBAT_OK_PROG =vems[1 N ROK?_] @)
K1

The OK_HYST pin sets the 2.89V upper limit, while the OK_PROG pin sets the 2.44V lower limit
for the hysteretic window. Table 8 shows the selected resistor values that create the desired
window.

The VBIAS voltage is internally programmed by the BQ25504 IC and is specified between 1.2V
and 1.3V.
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Table 8: Resistor Values for Programming V_BAT_OK Hysteresis

Resistor Nominal Value (MQ) Measured Value (MQ)
Rt 4.42 4.41
Roe 4.22 4.24
R 1.43 1.42

The resistor sum is maximized (>10 MQ) to minimize power consumption.

The V_BAT_OK flag features a hysteretic behavior (Figure 48). In the low state, the V_BAT_OK
voltage is OV. In the high state, V_BAT_OK equals the battery voltage.

V_BAT OK (V)
Main Boost Active
289V 1T
244V 4
) ! V_Bat (V)
2.44 2.89 3.1
SOBC Active

Figure 48: Boost Converter Selection Based on Battery Voltage

The hysteretic window was tested (Figure 49) by applying a ramping voltage onto the V_Bat pin
(orange) and observing the V_BAT_OK node (green).
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Figure 49: V_BAT Voltage (orange) and V_BAT_OK Voltage (green) vs. Time.
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Table 9: Theoretical and Experimental V_BAT_OK Trigger Points

Calculated (V) Measured (V) Percent Error
V_BAT_OK_PROG 2.44 2.38 2.46%
(lower trigger)
V_BAT_OK_HYST 2.89 2.87 0.35%
(upper trigger)

Theoretical and experimental values differ by less than 3% for both trigger points. This error is
attributed to variation in the internally programmed V_BIAS voltage. The BQ25504 refers all
voltages to the internally programmed V_BIAS voltage, specified between 1.2 and 1.3V. The
midpoint of 1.25V is used for calculating trigger points (Equations 7 and 8). Variation in the
V_BIAS voltage results in threshold voltage variations because the BQ25504 uses V_BIAS as
its reference.

With the hysteretic window set, the passive switch topology was designed to select which boost
converter receives the input voltage, shown in Table 10.

Table 10: Boost Converter Selection Logic

V_BAT_OK VOLTAGE HIGH LOW

BOOST CONVERTER Main Converter SOBC

The Self-Oscillating Boost Converter (SOBC) accepts the rectifier voltage when the V_BAT_OK
pin is set low and is disconnected from the input when the V_BAT_OK pin is set high. A 2N116
P-channel JFET was chosen for a low r,, (100Q) to minimize loss. The JFET must be
non-conducting (pinched off) when the gate voltage (V_BAT_OK) is 2.38V maximum. The
2N116 JFET’s pinch-off voltage threshold is 1.5V.

The Main Converter is disconnected from the rectifier output until V_BAT_OK becomes high,
thus an N-Channel MOSFET with a threshold voltage less than 2.38V is used. Minimizing
on-resistance decreases the drain-source voltage drop and maximizes the boost converter input
voltage. The PSMNR90-30BL MOSFET (MINT in Figure 50) was selected; 2.1V maximum
threshold voltage and maximum 1mQ R,g when conducting.

FET SPICE models simulate the passive switch with the boost converters modeled as resistive
loads, shown in Figure 50. The Main Converter (BQ25504) datasheet specifies 1.6kQ typical
input resistance. The SOBC input resistance was determined by measuring input voltage and
current for input voltages between 0 and 500 mV and 100kQ, 200kQ and 300kQ loads. Typical
SOBC input resistance of 800Q was used for passive switch testing.
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Figure 50: Passive Switch Simulation Schematic
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Figure 51: Passive Switch Simulated Switching Voltage (mV) vs. Time (s)

The V_BAT_OK waveform is a square pulse between 0V and 2.5V which simulates the
BQ25504. Figure 51 shows V_BAT_OK divided by 10 to allow all voltages to be displayed on
one plot. The drain voltage is 0.1V DC simulating the rectifier output voltage. The circuit is built,
tested, and compared to simulation predictions. Table 11 compares simulated and experimental
passive switch results.
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Table 11: Passive Switch Simulated vs. Experimental Results

V_BAT_OK Boost Simulated Boost |Experimental Boost Ideal Input
Converter Input Voltage (mV) | Input Voltage (mV) Voltage (mV)
ov Vsore 89 89.1 100
V i 0 4.1 0
2.5V Veosc 0 5.3 0
V ain 100 99.8 100

Main Boost Converter (BQ25504)

The BQ25504 achieves high efficiency by using Texas Instruments’ proprietary nano-power
management circuitry, which uses resistive dividers to manage maximum power point tracking.
The nano-power management algorithm samples the battery voltage to only draw power every
256ms. The BQ25504 uses this voltage to control its power management circuitry.

The boost converter features a maximum power point tracking system which optimizes
converter input impedance based on input voltage. The BQ25504 datasheet [7] advises a
VREF_SAMP voltage of approximately 75% of the source’s open circuit DC voltage. The
rectifier supplies 500mV with open-circuit load at -15dBm input power; the BQ25504 regulates
input voltage to 375mV for 75% Ry¢4, Roc, resistive divider.

-
|

VREF_SAMP =V|N,_D{:{DpenC1muit}[—H'§'§-‘— ' (9)
Roc1 + Rocz )

The BQ25504 datasheet recommends an Ry, Ry, sum of 20MQ to minimize power
consumption.

The BQ25504 also features under-voltage protection. This feature is not necessary because if
the battery voltage is below 2.38V, the BQ25504 is disconnected and the SOBC is connected.
As aresult, VBAT_UV is 2.20V, below the 2.38V hysteretic window lower trigger level. Vg5 is
internally programmed at 1.25V as the datasheet guarantees a value between 1.2V and 1.3V.

I( b
VBAT UV =VBIAS| 1+ F‘L'—‘"'-?J
\ Ruys

(10)
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The BQ25504 regulates the battery voltage to a maximum value, VBAT_OV. This voltage is
sustained when there is a surplus of input power. 3.1V is used.

™
VBAT_OV = %\fE!IAE-r] + Jovz (11)

Rowv1

Table 12: Main Boost Converter, Voltage Threshold Resistor Values

Voltage Setting Resistor Resistor Value (MQ)
VREF_SAMP = 375mV Roc 15.62
Roca 4.42
VBAT_UV =22V Ruvs 5.61
Ruvz 4.42
VBAT_OV =3.1V Rovi 5.92
Rovs 4.02

The BQ25504 IC 3.0mm x 3.0mm package was soldered onto a breakout board for pin access,
which introduces parasitic inductance and capacitance. This causes switching noise which
degrades circuit efficiency. The noise consumes power at the boost converter switching node.
The BQ25504 switching node (V gz47) displays this effect.
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Figure 52: BQ25504 Switching Waveform at V ;¢; Pin

The BQ25504’s efficiency is difficult to test by itself due to input voltage inconsistency. Every
256ms the IC consumes additional power to bias its resistive dividers. A current meter with
averaging is needed to measure the input current accurately; however, system efficiency is
measurable when the device is interfaced with the rectifier. The Integrated Rectenna section
describes operating principles.

Self-Oscillating Boost Converter (SOBC)

The SOBC was designed to boost an 80mV input voltage minimum. The battery is charged to
the 2.89V hysteretic threshold voltage to trigger the V_BAT_OK flag. At this voltage, the
BQ25504 replaces the SOBC and charges the battery. Figure 53 shows the SOBC schematic.

in Vout
Vin lﬂm 1 0 Transformer Coit

0.1p

l n 3-1 IJ

2N5457
J1 c1

3p
Figure 53: Self-Oscillating Boost Converter (SOBC)
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The Self-Oscillating Boost Converter is a modified Joule Thief circuit [8], which creates an
oscillating waveform at the 2N5457 JFET gate. The input voltage creates a current through the
transformer primary winding. This current induces a 20 times larger current into the JFET’s gate
due to the 20:1 transformer turns ratio, which forward biases the JFET gate-source PN junction.

The gate-source JFET current charges the output capacitor negatively, and amplifies the
drain-source and transformer primary winding currents. Increasing the primary winding current
increases the secondary winding current. This positive feedback continues until the JFET
saturates, creating a constant drain current. This causes the transformer magnetic field -
created by time-varying current - to collapse. The transformer secondary voltage becomes zero.
The output capacitor’s negative voltage is then applied to the JFET’s gate, creating pinching-off
(Ios = OA). This causes the system to return to its initial state and the process repeats itself.

Figure 54 shows the oscillating waveform at the JFET gate.
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Figure 54: SOBC Input DC Voltage (top) and Gate-Source Voltage (Bottom)
The maximum gate voltage is 730mV. This is the JFET gate-source PN junction ‘on’ voltage.

The 2N5457 JFET was chosen for its low gate-source pinch-off voltage (-0.6V). Since pinch-off
is required for the circuit to begin oscillation, minimizing pinch-off voltage allows for oscillation to
commence at lower supply voltages.

The JFET was chosen for its low |p¢4: drain saturation current with zero gate-source voltage.
Minimizing |55 decreases the required transistor saturation current. Since the oscillation occurs
between saturation and pinch-off, minimizing the required saturation current allows oscillations
to occur at lower input voltages (80mV).
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Figure 55 shows SOBC input-output voltage characteristics with 100kQ, 200kQ, and 300kQ

loads.
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Figure 55: SOBC Output Voltage and Power Efficiency vs Input Voltage

The three load conditions were compared to determine maximum load power transfer efficiency.

Measured input current (ammeter) and input voltage yields input power. Output power is

calculated from output voltage and load resistance. Figure 56 shows power efficiency and gain
vs input voltage for the three load conditions.
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Figure 56: SOBC Gain and Power Efficiency vs Input Voltage and Load Condition

The 300kQ load yields both the highest efficiency and gain; however, incremental efficiency
improvements diminish as load resistance increases. This is supported by the closer proximity
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200kQ and 300kQ efficiency curves compared to the 200kQ and 100kQ load curves. As a result,
300kQ is the optimum load condition. The efficiency is between 25% and 30% with a 300kQ
load. This is acceptable as the passive boost stage is only designed to boost the battery voltage
to 2.89V to power the more efficient active boost stage.

The SOBC output is a negative DC voltage. This poses a problem because the main boost
converter outputs a positive DC voltage. Both boost converters are designed to charge a
grounded capacitor. For complementary operation, the two boost converters cannot share a
common ground due to their opposing output voltages. However, the input voltage must always
be referenced to the same ground node. A passive ground switching network is required to
implement the design. The input must be referenced to the SOBC ground when the SOBC is
used and referenced to the BQ25504 ground when the BQ25504 is used. This was attempted,
but could not be achieved due to time constraints. To interface these two boost converters, the
proposed Rectenna system uses the low input voltage LTC3108 boost converter instead.

LTC3108 Boost Converter

The LTC3108 boost converter datasheet specifies a 20mV input startup voltage. This is
sufficient to charge the output capacitor to 2.89V to turn on the main boost converter. The
LTC3108 has four discrete programmable output voltages: 2.3V, 3.3V, 4.1V, and 5.5V. The
3.3V output voltage is chosen to meet the BQ25504's minimum required 2.89V switch threshold.
The LTC3108 attempts to boost the battery voltage to 3.3V, but is switched off when battery
voltage reaches 2.89V. At this threshold, the BQ25504 begins charging the output.
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Figure 57: LTC3108 Boost Converter Schematic

The LTC3108 is simulated with a 50mV input voltage and a 300kQ load resistance.
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Figure 58: LTC3108 Output Voltage with 300kQ Load Resistance and 50mV Input vs. Time
The LTC3108 Boost Converter simulation shows that with a 50mV input and a 300kQ load, it

requires 17.5 seconds to charge the battery to the required 2.89V. The LTC3108 switching node
is shown in Figure 59.
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Figure 59: LTC3108 Switching Node Simulation
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The circuit was built and tested. Figure 60 shows the measured switching node voltage.
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Figure 60: LTC3108 Switching Node Oscilloscope Measurement

The LTC3108 is interfaced with the BQ25504 and the passive switching network. However,
glitches on the V_BAT_OK pin prevented proper circuit operation. The LTC3108 charges the
storage capacitor, but once the V_BAT_OK pin assumes the high state, it occasionally
transitions to the low state causing the LTC3108 to reset.

During integrated Rectenna testing, only the BQ25504 is used. The startup boost converter was
omitted and the BQ25504 cold-start circuitry is used. Further research must be conducted to
understand and remove the glitch in the BQ25504 V_BAT_OK pin for the boost converter

design to function. Additionally, a ground switching network is needed for SOBC system
integration.
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Integrated Rectenna

The antenna, rectifier, and BQ25504 boost converter were integrated and tested for overall
efficiency. Input RF power is measured using a 20dB directional coupler. At an input RF power
of -6dBm, voltage began to develop at the output. Between -5dBm and -2dBm the boost
converter’s cold-start circuitry was active. Until the battery voltage reaches 2.89V, the main
boost converter uses its low efficiency cold-start circuitry. This is the stage handled by the
SOBC. At -1dBm input power, the main boost converter stage becomes fully active and the
cold-start circuitry is disabled. This corresponds to an efficiency increase.

QOutput Voltage vs. |nput RF Power for Rectifier Efficiency of Rectifierand BQ25504 vs.
and BQ25504 Boost Converter Input Power

Output Valtage [V)
L]
Efficlency [3)

0 2 2 0%
-12 =10 -3 -5 -4 -2 a 2 -12 -10 B -6 -4 -2 C 2
Input RF Power [dBm) Input RF Power

Figure 61: Rectifier and BQ25504 Boost Converter, Output Voltage vs. Input RF Power

The integrated system requires a received power of -1dBm to turn on the main boost converter
(BQ25504). This far exceeds power levels found in ambient signals. As a result, the Rectenna
cannot be used for ambient RF energy harvesting when combined with the boost converter. The
unloaded rectifier results (without the boost converter) are shown in Figure 41 (p. 30).
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Conclusions

Overall, the Rectenna implementation in this report is not feasible for general commercial use
and may only provide enough power for simple, portable devices. This does not discount the
Rectenna concept's feasibility as several commercial solutions are currently under development;
e.g.: Freevolt's RF energy harvesting solution [11].

Several potential system improvements are presented in this paper to allow practical use. For
example, the matching network should be designed after the rectifier hardware implementation
for easier matching. Also, designing a passive ground-switching network to integrate SOBC with
BQ25504 would improve startup capability. The ground-switching network is required to use the
SOBC and BQ25504 together due to the SOBC’s inverted output. Eliminating the V_BAT_OK
glitch from the BQ25504 allows for boost converter integration.

A "practical use" recommendation is to employ an omnidirectional antenna, an antenna that
radiates equally well in all directions in one plane. Using a directional antenna limits the power
harvesting capabilities in certain locations, because it requires directing the antenna at an
explicit source. An omnidirectional antenna allows harvesting from many different, albeit smaller,
intensity sources.

The RF energy harvesting system presented in this paper is comparable to 2016 IEEE APS
Student Design Contest finalists. South University of Technology and China achieved 20%
efficiency at -20dBm input power [9]; however, -20dBm appears to be transmitted rather than
received power. The Team Waterloo submission [10] also used the Greinacher Rectifier and
achieved 20% efficiency at -20dBm input power. The two-stage Greinacher rectifier (without
boost converter) efficiency at -20dBm is 23%, shown in Figure 41 (p. 30). This result is slightly
better than the two competitors mentioned previously. Although the boost converter increases
the output DC voltage, the system efficiency is degraded. Figure 62 shows the Cal Poly
two-stage Greinacher Rectifier vs. the Team Waterloo submission.
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Appendix A: Senior Project Analysis

1. Rectenna Functional Requirements Summary

a.

The Rectenna rectifies captured RF signals and stores the converted DC power
in a storage capacitor. In total, the Rectenna has 4 main stages: Antenna,
rectifier, boost-converter, and storage capacitor. The harvested RF is rectified by
a Greinacher rectifier, converting RF signals to DC power.

2. Rectenna Primary Constraints

a.

The first design constraint is receiving a signal that can be successfully rectified
by the Greinacher rectifier. The present antenna is only tuned to 1.9GHz. When
using the Rectenna in an area where 1.9GHz signals do not exist, a signal
cannot be received. The antenna receives a singular frequency with a 1%
bandwidth due to size and cost issues. The overall Rectenna output power is a
second constraint.

3. Rectenna Economic Impacts

a.

The rectenna system is currently not marketable. The first generation Rectenna
provides enough power for select applications. For example, radio frequency
identification (RFID) tags could possibly use this rectenna system since they are
low-power devices.

The predicted project cost was about $130, covering all parts needed to build a
single Rectenna system. Each graduating electrical engineering student is
allowed $150 for their senior project, increasing starting funds above the project
cost. No equipment costs are included in the predicted project cost because all
equipment for designing and building the Rectenna are available for student-use
in Cal Poly’s EE department. There are no current plans to sell Rectenna units to
the public. Before Rectenna system profits can be discussed, the design must
become marketable.
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4. Time Constraints

a.

The Rectenna system must be completed by June 2016. This includes the
deadline set for the design, testing, and manufacturing. The estimated
development time for the entire Rectenna system is 6 months. During this time,
all parts must be purchased, individual stages must be tested, and the system

must be integrated.

5. Manufacturing the Rectenna on a Commercial Basis

a.

RF energy harvesting is not currently available for purchase by the general
public. Only engineers interested in pursuing alternative forms of energy or

improving upon the technology would be interested in purchasing a Rectenna.

The user incurs no cost when operating the passive Rectenna. Once built, the
Rectenna collects power in the storage capacitor, and the user can power an

electronic device.

6. Environmental

a.

Manufacturing capacitors, resistors, IC’s, and any other electrical components
harms the environment. Manufacturing plants that produce these components
release harmful toxin by-products into the ecosystem. However, the Rectenna
system is relatively simple when compared to smartphone, computers, and
electronic devices with high numbers of components. Therefore, the overall
environmental detriment created by the components needed for the Rectenna is

much lower than that of other commercial electronic devices.

7. Manufacturability

a.

One of the challenges when manufacturing the Rectenna on a large scale is
building antennas that are tuned to different frequencies which may be more
prominent in other areas of the world. Assembly line antenna production is
difficult to implement since each antenna at a different frequency would require a
different tuning process. This problem is resolved with the addition of a tuning
circuit or stage in the Rectenna that tunes the antenna to a different frequency
and changes the matching network to accommodate. While difficult to implement,

this solution is possible.
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8. Maintenance
a. The Rectenna currently operates at a cellular frequency which is problematic

because the Rectenna potentially “steals” spectral energy from other devices and
impedes that device’s functions. A proposed upgrade of the Rectenna is
changing the design of the antenna stage and allowing for tuning the antenna to
multiple frequencies instead of one. Rectenna design upgrade requires additional
labor, components, and manufacturing costs. This increases Rectenna system
cost and consumer price.

9. Ethical

a. The Rectenna project does not violate any IEEE code of ethics rules. In fact, the
Rectenna project upholds and reinforces many IEEE code of ethics principles.
IEEE code of ethics, item #5 states: “to improve the understanding of technology;
its appropriate application, and potential consequences.” RF energy harvesting is
underdeveloped. By completing a Rectenna design, the project team will extend
the technology. Another IEEE code of ethics item upheld by the Rectenna design
project is #7: “to seek, accept, and offer honest criticism of technical work, to
acknowledge and correct errors, and to credit properly the contributions of others.
“Completion of the Rectenna project involves feedback from peers, professors,
and the IEEE itself which espouses better communication and relations between
the groups.

b. When examining the Rectenna project using Utilitarianism, the project remains a
worthy cause for completion. Utilitarianism specifies the purpose of morality is to
improve life by increasing the amount of good things (happiness) in the world and
decreasing the amount of bad things (unhappiness). The Rectenna increases
overall happiness by reducing energy cost. This energy cost reduction enables
less-fortunate people access to free and renewable energy, improving the quality

of life. Thus, the project is a worthwhile pursuit.
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10. Health and Safety

a.

The health and safety concerns of designing and building the Rectenna are,
overall, minimal. After rectification, the DC voltages measured are on the order of
tens of millivolts, a value that could never harm a human. After boosting the
voltage to 3.3V for charging the storage capacitor, there are little to no health
risks if a human were to touch the 3.3V node. There are also no health risks

associated with 1.9GHz signal reception or overheating of any components.

11. Social and Political

a.

The Rectenna system provides clean and renewable energy to the public. The
ability to generate power from a renewable resource helps reduce the
dependence to fossil fuels of today’s society [1]. Reduction of fossil fuels
improves the global warming situation, leaving the biosphere more inhabitable for
all life. Considering the Rectenna as a device that improves the quality of life for
all living creatures on earth means all living creatures have a share in the

success of this project.

12. Developmental

a.

To understand the boost stage of the Rectenna in the project proposal, the entire
subject of DC-DC conversion was considered, including ultra-low voltage DC-DC
conversion, since the rectified signal is on the order of microvolts to millivolts.
The Rectenna boost stage consists of both an active and a passive boost
converter. The passive boost converter is a Self-Oscillating Boost Converter
(SOBC). The SOBC charges a storage capacitor when its voltage is below 2.89V.
At this voltage, the circuit switches trigger, disconnecting the SOBC and connects
the main active boost converter which is more efficient. The main boost converter
is the BQ25504 ultra-low power boost converter and is equipped with a maximum
power point tracking algorithm that varies the converter’s input impedance in
order to maximize output power. The BQ25504 has a 330mV cold start input
voltage and once running, rectifies voltages as low as 80mV, while operating off
330nA.

The Greinacher Rectifier outputs a voltage less than 330mV to operate the main
boost converter. The BQ25504 operates as an active component, powering itself
through the storage capacitor. If the voltage on the storage capacitor falls below
3.3V, the SOBC reconnects to recharge the capacitor such that the main boost is

used. No external power supply is needed.
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