22,826 research outputs found

    CAS-CNN: A Deep Convolutional Neural Network for Image Compression Artifact Suppression

    Get PDF
    Lossy image compression algorithms are pervasively used to reduce the size of images transmitted over the web and recorded on data storage media. However, we pay for their high compression rate with visual artifacts degrading the user experience. Deep convolutional neural networks have become a widespread tool to address high-level computer vision tasks very successfully. Recently, they have found their way into the areas of low-level computer vision and image processing to solve regression problems mostly with relatively shallow networks. We present a novel 12-layer deep convolutional network for image compression artifact suppression with hierarchical skip connections and a multi-scale loss function. We achieve a boost of up to 1.79 dB in PSNR over ordinary JPEG and an improvement of up to 0.36 dB over the best previous ConvNet result. We show that a network trained for a specific quality factor (QF) is resilient to the QF used to compress the input image - a single network trained for QF 60 provides a PSNR gain of more than 1.5 dB over the wide QF range from 40 to 76.Comment: 8 page

    Energy-efficient bandwidth reservation for bulk data transfers in dedicated wired networks

    Get PDF
    International audienceThe ever increasing number of Internet connected end-hosts call for high performance end-to-end networks leading to an increase in the energy consumed by the networks. Our work deals with the energy consumption issue in dedicated network with bandwidth provisionning and in-advance reservations of network equipments and bandwidth for Bulk Data transfers. First, we propose an end-to-end energy cost model of such networks which described the energy consumed by a transfer for all the crossed equipments. This model is then used to develop a new energy-aware framework adapted to Bulk Data Transfers over dedicated networks. This framework enables switching off unused network portions during certain periods of time to save energy. This framework is also endowed with prediction algorithms to avoid useless switching off and with adaptive scheduling management to optimize the energy used by the transfers. 1 Introductio
    • …
    corecore