5 research outputs found

    MAC protocols with wake-up radio for wireless sensor networks: A review

    Get PDF
    The use of a low-power wake-up radio in wireless sensor networks is considered in this paper, where relevant medium access control solutions are studied. A variety of asynchronous wake-up MAC protocols have been proposed in the literature, which take advantage of integrating a second radio to the main one for waking it up. However, a complete and a comprehensive survey particularly on these protocols is missing in the literature. This paper aims at filling this gap, proposing a relevant taxonomy, and providing deep analysis and discussions. From both perspectives of energy efficiency and latency reduction, as well as their operation principles, state-of-the-art wake-up MAC protocols are grouped into three main categories: (1) duty cycled wake-up MAC protocols; (2) non-cycled wake-up protocols; and (3) path reservation wake-up protocols. The first category includes two subcategories: (1) static wake-up protocols versus (2) traffic adaptive wake-up protocols. Non-cycled wake-up MAC protocols are again divided into two classes: (1) always-on wake-up protocol and (2) radio-triggered wake-up protocols. The latter is in turn split into two subclasses: (1) passive wake-up MAC protocols versus (2) ultra low power active wake-up MAC protocols. Two schemes could be identified for the last category, (1) broadcast based wake-up versus (2) addressing based wake-up. All these classes are discussed and analyzed in this paper, and canonical protocols are investigated following the proposed taxonomy

    Ultra-low power IoT applications: from transducers to wireless protocols

    Get PDF
    This dissertation aims to explore Internet of Things (IoT) sensor nodes in various application scenarios with different design requirements. The research provides a comprehensive exploration of all the IoT layers composing an advanced device, from transducers to on-board processing, through low power hardware schemes and wireless protocols for wide area networks. Nowadays, spreading and massive utilization of wireless sensor nodes pushes research and industries to overcome the main limitations of such constrained devices, aiming to make them easily deployable at a lower cost. Significant challenges involve the battery lifetime that directly affects the device operativity and the wireless communication bandwidth. Factors that commonly contrast the system scalability and the energy per bit, as well as the maximum coverage. This thesis aims to serve as a reference and guideline document for future IoT projects, where results are structured following a conventional development pipeline. They usually consider communication standards and sensing as project requirements and low power operation as a necessity. A detailed overview of five leading IoT wireless protocols, together with custom solutions to overcome the throughput limitations and decrease the power consumption, are some of the topic discussed. Low power hardware engineering in multiple applications is also introduced, especially focusing on improving the trade-off between energy, functionality, and on-board processing capabilities. To enhance these features and to provide a bottom-top overview of an IoT sensor node, an innovative and low-cost transducer for structural health monitoring is presented. Lastly, the high-performance computing at the extreme edge of the IoT framework is addressed, with special attention to image processing algorithms running on state of the art RISC-V architecture. As a specific deployment scenario, an OpenCV-based stack, together with a convolutional neural network, is assessed on the octa-core PULP SoC

    Wireless sensor networks for flight applications

    Get PDF
    Die Prognosen der Marktentwicklung im Luftfahrtbereich sehen sehr positiv aus. In den kommenden 20 Jahren soll sich die Anzahl der Passagierflugzeuge verdoppeln, was sicherlich die Geschäfte im Luftfahrtbereich anregen wird. Jedoch bildet sich neue Konkurrenz in Asien, welche den Wettbewerb erhöhen wird. Um in dieser neuen Marktsituation weiterhin bestehen zu können, müssen Flugzeughersteller vermehrt innovative Flugzeugkonzepte entwickeln, mit welchen sie sich von ihren Konkurrenten absetzen können. Die meisten Innovationen zielen auf eine Reduzierung des Gewichts und auf höhere Energieeffizienz von Flugzeugen ab. Ebenso steht eine Reduzierung der Inbetriebnahme- und Betriebskosten im Fokus. Ein vielversprechender Ansatz diese Ziele zu erreichen, ist der Einsatz von drahtlosen Sensornetzen, um Luftfahrtanwendungen anzubinden. Der Einsatz so eines drahtlosen Sensornetzes kann in vielerlei Hinsicht Nutzen bringen. Verkabelung kann eingespart werden was große Gewichtsreduktionen mit sich bringt. Arbeitsabläufe können verbessert werden, wodurch Inbetriebnahme- und Betriebskosten reduziert werden können. Zusätzlich kann der Einsatz von drahtlosen Sendernetzen dazu beitragen, bisher nicht sinnvoll realisierbare Anwendungen einzuführen, beziehungsweise diese erst zu ermöglichen. In dieser Arbeit werden typische Flugzeuganwendungen identifiziert, welche von dem Einsatz eines drahtlosen Sendernetzes profitieren können. Die Herausforderungen, die der Einsatz so eines drahtlosen Sensornetzes hervorruft, werden beleuchtet, als auch entsprechende Technologien und Protokolle vorgestellt, welche darauf abzielen, diesen Herausforderungen zu begegnen.The market forecast for aircraft manufacturers is very promising; the fleet of passenger aircraft will double. This will clearly generate a strong business for aircraft manufactures. But new competitors arise and, hence, rivalry is increasing. To succeed in this market situation, aircraft manufacturers have to build innovative aircraft to set themselves apart from competitors. Most of the research effort is concentrated on developing lighter, more energy-efficient aircraft which reduce operational costs for airline operators. A very promising approach to accomplish this goal is to introduce wireless sensor networks for flight applications. Such wireless sensor networks can be very beneficial: they can help to reduce weight by saving cabling, they can improve workflows and, hence, reduce commissioning and operational costs, and they can enable new applications which were not feasible or even possible before.In this work, flight applications are investigated to identify the challenges which arise when introducing such a wireless sensor network. Technologies and protocols are presented which aim to tackle these challenges. In particular, the most demanding prerequisites are energy efficiency, transmission reliability, scalability, synchronization, and localization. Four of these demands will be addressed by three different protocols. First, a clock synchronization protocol is presented which uses a special hardware devicea wake-up receiverto achieve synchronization in a very energy-efficient, reliable, and scalable way. Second, using this same technology a clustering protocol is presented which can reduce redundant transmissions. In doing so, it becomes possible to lower the mean energy consumption for hundreds of sensor nodes. Last, a custom-tailored medium access protocol is presented which utilizes spatial diversity to increase transmission reliability while keeping a very low power demand.Tag der Verteidigung: 25.08.2015Paderborn, Univ., Diss., 201

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware
    corecore