171 research outputs found

    Energy efficiency of some non-cooperative, cooperative and hybrid communication schemes in multi-relay WSNs

    Get PDF
    In this paper we analyze the energy efficiency of single-hop, multi-hop, cooperative selective decode-and-forward, cooperative incremental decode-and-forward, and even the combination of cooperative and non-cooperative schemes, in wireless sensor networks composed of several nodes. We assume that, as the sensor nodes can experience either non line-of-sight or some line-of-sight conditions, the Nakagami-m fading distribution is used to model the wireless environment. The energy efficiency analysis is constrained by a target outage probability and an end-to-end throughput. Our results show that in most scenarios cooperative incremental schemes are more energy efficient than the other methods

    Joint transceiver design and power optimization for wireless sensor networks in underground mines

    Get PDF
    Avec les grands dĂ©veloppements des technologies de communication sans fil, les rĂ©seaux de capteurs sans fil (WSN) ont attirĂ© beaucoup d’attention dans le monde entier au cours de la derniĂšre dĂ©cennie. Les rĂ©seaux de capteurs sans fil sont maintenant utilisĂ©s pour a surveillance sanitaire, la gestion des catastrophes, la dĂ©fense, les tĂ©lĂ©communications, etc. De tels rĂ©seaux sont utilisĂ©s dans de nombreuses applications industrielles et commerciales comme la surveillance des processus industriels et de l’environnement, etc. Un rĂ©seau WSN est une collection de transducteurs spĂ©cialisĂ©s connus sous le nom de noeuds de capteurs avec une liaison de communication distribuĂ©e de maniĂšre alĂ©atoire dans tous les emplacements pour surveiller les paramĂštres. Chaque noeud de capteur est Ă©quipĂ© d’un transducteur, d’un processeur de signal, d’une unitĂ© d’alimentation et d’un Ă©metteur-rĂ©cepteur. Les WSN sont maintenant largement utilisĂ©s dans l’industrie miniĂšre souterraine pour surveiller certains paramĂštres environnementaux, comme la quantitĂ© de gaz, d’eau, la tempĂ©rature, l’humiditĂ©, le niveau d’oxygĂšne, de poussiĂšre, etc. Dans le cas de la surveillance de l’environnement, un WSN peut ĂȘtre remplacĂ© de maniĂšre Ă©quivalente par un rĂ©seau Ă  relais Ă  entrĂ©es et sorties multiples (MIMO). Les rĂ©seaux de relais multisauts ont attirĂ© un intĂ©rĂȘt de recherche important ces derniers temps grĂące Ă  leur capacitĂ© Ă  augmenter la portĂ©e de la couverture. La liaison de communication rĂ©seau d’une source vers une destination est mise en oeuvre en utilisant un schĂ©ma d’amplification/transmission (AF) ou de dĂ©codage/transfert (DF). Le relais AF reçoit des informations du relais prĂ©cĂ©dent et amplifie simplement le signal reçu, puis il le transmet au relais suivant. D’autre part, le relais DF dĂ©code d’abord le signal reçu, puis il le transmet au relais suivant au deuxiĂšme Ă©tage s’il peut parfaitement dĂ©coder le signal entrant. En raison de la simplicitĂ© analytique, dans cette thĂšse, nous considĂ©rons le schĂ©ma de relais AF et les rĂ©sultats de ce travail peuvent Ă©galement ĂȘtre dĂ©veloppĂ©s pour le relais DF. La conception d’un Ă©metteur/rĂ©cepteur pour le relais MIMO multisauts est trĂšs difficile. Car Ă  l’étape de relais L, il y a 2L canaux possibles. Donc, pour un rĂ©seau Ă  grande Ă©chelle, il n’est pas Ă©conomique d’envoyer un signal par tous les liens possibles. Au lieu de cela, nous pouvons trouver le meilleur chemin de la source Ă  la destination qui donne le rapport signal sur bruit (SNR) de bout en bout le plus Ă©levĂ©. Nous pouvons minimiser la fonction objectif d’erreur quadratique moyenne (MSE) ou de taux d’erreur binaire (BER) en envoyant le signal utilisant le chemin sĂ©lectionnĂ©. L’ensemble de relais dans le chemin reste actif et le reste des relais s’éteint, ce qui permet d’économiser de l’énergie afin d’amĂ©liorer la durĂ©e de vie du rĂ©seau. Le meilleur chemin de transmission de signal a Ă©tĂ© Ă©tudiĂ© dans la littĂ©rature pour un relais MIMO Ă  deux bonds mais est plus complexe pour un ...With the great developments in wireless communication technologies, Wireless Sensor Networks (WSNs) have gained attention worldwide in the past decade and are now being used in health monitoring, disaster management, defense, telecommunications, etc. Such networks are used in many industrial and consumer applications such as industrial process and environment monitoring, among others. A WSN network is a collection of specialized transducers known as sensor nodes with a communication link distributed randomly in any locations to monitor environmental parameters such as water level, and temperature. Each sensor node is equipped with a transducer, a signal processor, a power unit, and a transceiver. WSNs are now being widely used in the underground mining industry to monitor environmental parameters, including the amount of gas, water, temperature, humidity, oxygen level, dust, etc. The WSN for environment monitoring can be equivalently replaced by a multiple-input multiple-output (MIMO) relay network. Multi-hop relay networks have attracted significant research interest in recent years for their capability in increasing the coverage range. The network communication link from a source to a destination is implemented using the amplify-and-forward (AF) or decode-and-forward (DF) schemes. The AF relay receives information from the previous relay and simply amplifies the received signal and then forwards it to the next relay. On the other hand, the DF relay first decodes the received signal and then forwards it to the next relay in the second stage if it can perfectly decode the incoming signal. For analytical simplicity, in this thesis, we consider the AF relaying scheme and the results of this work can also be developed for the DF relay. The transceiver design for multi-hop MIMO relay is very challenging. This is because at the L-th relay stage, there are 2L possible channels. So, for a large scale network, it is not economical to send the signal through all possible links. Instead, we can find the best path from source-to-destination that gives the highest end-to-end signal-to-noise ratio (SNR). We can minimize the mean square error (MSE) or bit error rate (BER) objective function by sending the signal using the selected path. The set of relay in the path remains active and the rest of the relays are turned off which can save power to enhance network life-time. The best path signal transmission has been carried out in the literature for 2-hop MIMO relay and for multiple relaying it becomes very complex. In the first part of this thesis, we propose an optimal best path finding algorithm at perfect channel state information (CSI). We consider a parallel multi-hop multiple-input multiple-output (MIMO) AF relay system where a linear minimum mean-squared error (MMSE) receiver is used at the destination. We simplify the parallel network into equivalent series multi-hop MIMO relay link using best relaying, where the best relay ..

    Power Optimisation and Relay Selection in Cooperative Wireless Communication Networks

    Get PDF
    Cooperative communications have emerged as a significant concept to improve reliability and throughput in wireless systems. In cooperative networks, the idea is to implement a scheme in wireless systems where the nodes can harmonize their resources thereby enhancing the network performance in different aspects such as latency, BER and throughput. As cooperation spans from the basic idea of transmit diversity achieved via MIMO techniques and the relay channel, it aims to reap somewhat multiple benefits of combating fading/burst errors, increasing throughput and reducing energy use. Another major benefit of cooperation in wireless networks is that since the concept only requires neighbouring nodes to act as virtual relay antennas, the concept evades the negative impacts of deployment costs of multiple physical antennas for network operators especially in areas where they are difficult to deploy. In cooperative communications energy efficiency and long network lifetimes are very important design issues, the focus in this work is on ad hoc and sensor network varieties where the nodes integrate sensing, processing and communication such that their cooperation capabilities are subject to power optimisation. As cooperation communications leads to trade-offs in Quality of Services and transmit power, the key design issue is power optimisation to dynamically combat channel fluctuations and achieve a net reduction of transmit power with the goal of saving battery life. Recent researches in cooperative communications focus on power optimisation achieved via power control at the PHY layer, and/or scheduling mechanism at the MAC layer. The approach for this work will be to review the power control strategy at the PHY layer, identify their associated trade-offs, and use this as a basis to propose a power control strategy that offers adaptability to channel conditions, the road to novelty in this work is a channel adaptable power control algorithm that jointly optimise power allocation, modulation strategy and relay selection. Thus, a novel relay selection method is developed and implemented to improve the performance of cooperative wireless networks in terms of energy consumption. The relay selection method revolves on selection the node with minimum distance to the source and destination. The design is valid to any wireless network setting especially Ad-hoc and sensor networks where space limitations preclude the implementation of bigger capacity battery. The thesis first investigates the design of relay selection schemes in cooperative networks and the associated protocols. Besides, modulation strategy and error correction code impact on energy consumption are investigated and the optimal solution is proposed and jointly implemented with the relay selection method. The proposed algorithm is extended to cooperative networks in which multiple nodes participate in cooperation in fixed and variable rate system. Thus, multi relay selection algorithm is proposed to improve virtual MIMO performance in terms of energy consumption. Furthermore, motivated by the trend of cell size optimisation in wireless networks, the proposed relay selection method is extended to clustered wireless networks, and jointly implemented with virtual clustering technique. The work will encompass three main stages: First, the cooperative system is designed and two major protocols Decode and Forward (DF) and amplify and forward (AF) are investigated. Second, the proposed algorithm is modelled and tested under different channel conditions with emphasis on its performance using different modulation strategies for different cooperative wireless networks. Finally, the performance of the proposed algorithm is illustrated and verified via computer simulations. Simulation results show that the distance based relay selection algorithm exhibits an improved performance in terms of energy consumption compared to the conventional cooperative schemes under different cooperative communication scenarios

    Comprehensive performance analysis of fully cooperative communication in WBANs

    Get PDF
    © 2013 IEEE. While relay-based cooperative networks (widely known in the literature as cooperative communication), where relays only forward signals from the sources to the destination, have been extensively researched, fully cooperative systems have not been thoroughly examined. Unlike relay networks, in a fully cooperative network, each node acts as both a source node sending its own data and a relay forwarding its partner's data to the destination. Mutual cooperation between neighboring nodes is believed to improve the overall system error performance, especially when space-time codes are incorporated. However, a comprehensive performance analysis of space-time-coded fully cooperative communication from all three perspectives, namel,y error performance, outage probability, and energy efficiency, is still missing. Answers to the commonly asked questions of whether, in what conditions, and to what extent the space-time-coded fully cooperative communication is better than direct transmission are still unknown. Motivated by this fact and inspired by the increasing popularity of healthcare applications in wireless body area networks (WBANs), this paper derives for the first time a comprehensive performance analysis of a decode-and-forward space-time coded fully cooperative communication network in Rayleigh and Rician fading channels in either identically or non-identically distributed fading scenario. Numerical analysis of error performance, outage probability, and energy efficiency, validated by simulations, show that fully cooperative communication is better than direct transmission from all three aspects in many cases, especially at a low-power and low signal-to-noise ratio regime, which is a typical working condition in WBANs

    Practical packet combining for use with cooperative and non-cooperative ARQ schemes in wireless sensor networks

    Get PDF
    Although it is envisaged that advances in technology will follow a "Moores Law" trend for many years to come, one of the aims of Wireless Sensor Networks (WSNs) is to reduce the size of the nodes as much as possible. The issue of limited resources on current devices may therefore not improve much with future designs as a result. There is a pressing need, therefore, for simple, efficient protocols and algorithms that can maximise the use of available resources in an energy efficient manner. In this thesis an improved packet combining scheme useful on low power, resource-constrained sensor networks is developed. The algorithm is applicable in areas where currently only more complex combining approaches are used. These include cooperative communications and hybrid-ARQ schemes which have been shown to be of major benefit for wireless communications. Using the packet combining scheme developed in this thesis more than an 85% reduction in energy costs are possible over previous, similar approaches. Both simulated and practical experiments are developed in which the algorithm is shown to offer up to approximately 2.5 dB reduction in the required Signal-to-Noise ratio (SNR) for a particular Packet Error Rate (PER). This is a welcome result as complex schemes, such as maximal-ratio combining, are not implementable on many of the resource constrained devices under consideration. A motivational side study on the transitional region is also carried out in this thesis. This region has been shown to be somewhat of a problem for WSNs. It is characterised by variable packet reception rate caused by a combination of fading and manufacturing variances in the radio receivers. Experiments are carried out to determine whether or not a spread-spectrum architecture has any effect on the size of this region, as has been suggested in previous work. It is shown that, for the particular setup tested, the transitional region still has significant extent even when employing a spread-spectrum architecture. This result further motivates the need for the packet combining scheme developed as it is precisely in zones such as the transitional region that packet combining will be of most benefit
    • 

    corecore