89 research outputs found

    Ecodriving and Carbon Footprinting: Understanding How Public Education Can Reduce Greenhouse Gas Emissions and Fuel Use

    Get PDF
    Ecodriving is a collection of changes to driving behavior and vehicle maintenance designed to impact fuel consumption and greenhouse gas (GHG) emissions in existing vehicles. Because of its promise to improve fuel economy within the existing fleet, ecodriving has gained increased attention in North America. One strategy to improve ecodriving is through public education with information on how to ecodrive. This report provides a review and study of ecodriving from several angles. The report offers a literature review of previous work and programs in ecodriving across the world. In addition, researchers completed interviews with experts in the field of public relations and public message campaigns to ascertain best practices for public campaigns. Further, the study also completed a set of focus groups evaluating consumer response to a series of websites that displayed ecodriving information. Finally, researchers conducted a set of surveys, including a controlled stated-response study conducted with approximately 100 University of California, Berkeley faculty, staff, and students, assessing the effectiveness of static ecodriving web-based information as well as an intercept clipboard survey in the San Francisco Bay Area. The stated-response study consisted of a comparison of the experimental and control groups. It found that exposure to ecodriving information influenced people’s driving behavior and some maintenance practices. The experimental group’s distributional shift was statistically significant, particularly for key practices including: lower highway cruising speed, driving behavior adjustment, and proper tire inflation. Within the experimental group (N = 51), fewer respondents significantly changed their maintenance practices (16%) than the majority that altered some driving practices (71%). This suggests intentionally altering driving behavior is easier than planning better maintenance practices. While it was evident that not everyone modifies their behavior as a result of reviewing the ecodriving website, even small shifts in behavior due to inexpensive information dissemination could be deemed cost effective in reducing fuel consumption and emissions

    DECOMOBIL Roadmap for research on Human Centred Design of ICT for clean and safe mobility. Deliverable 2.2

    Get PDF
    The scientific seminar on 'Roadmap of Information & Communication Technology design for clean and efficient multimodal mobility' organized by Ifsttar in the framework of the European project DECOMOBIL, has been held the 28th of May 2013 in Munich, Germany. The aims of the event were to overview perspectives of research in the domain of ICT and green transport, with presentation of the main key issues, the on-going major projects, some outstanding results and the scientific and technical lacks of knowledge to overcome, in order to debate about future steps to follow to reach identified and consensual objectives in this domain. Speakers have been identified as key experts in the ecomobility research areas, with diversified points of view and approaches, in order to give to the audience a holistic vision of this issue. During this seminar, an overview of European projects on ecomobility such as eCoMove, compass4D, Adasis, Amitran, has been provided. Experience gained from the iMobility WG on ICT for clean and efficient mobility, which aims providing a vision on eco-friendly mobility, has been presented. Priorities for road safety research in Europe have been defined through the presentation of the PROS project, and transport cross-modal considerations on safety and human factors have been discussed through the presentation of the EXCROSS project. Perspectives on Powered-Two-Wheels contribution to ecomobility in addition to sustainable driving/riding training for a safe and cost efficient behavior have been drawn. Finally, main issues related to design, integration and safety of mobile service for ecomobility and concept of cooperative services have been presented and discussed.A round table allowed the audience to interact in a fruitful way with all the speakers of the day.After summarizing the context linked to ecomobility at a European level, this report gathers a summary of each presentation in addition to the full set of slides displayed at the seminar.Furthermore, all the presentations (slides and video recordings of the speakers) are available for downloading on the DECOMOBIL website http://decomobil.humanist-vce.eu/Downloads.html Document type: Repor

    Smart procurement of naturally generated energy (SPONGE) for PHEVs

    Get PDF
    In this paper, we propose a new engine management system for hybrid vehicles to enable energy providers and car manufacturers to provide new services. Energy forecasts are used to collaboratively orchestrate the behaviour of engine management systems of a fleet of plug-in hybrid electric vehicle (PHEVs) to absorb oncoming energy in a smart manner. Cooperative algorithms are suggested to manage the energy absorption in an optimal manner for a fleet of vehicles, and the mobility simulator SUMO (Simulation of Urban MObility) is used to demonstrate the efficacy of the proposed idea

    Quantifying the Effects of Sustainable Urban Mobility Plans

    Get PDF
    This technical note uses the expert scoring information available in current scientific literature in order to explore the impacts and effects that different urban measures may have in planning for sustainability on a European wide level.JRC.J.1-Economics of Climate Change, Energy and Transpor

    Fully automated vehicles: A cost of ownership analysis to inform early adoption

    Get PDF
    Vehicle automation and its uptake is an active area of research among transportation academics. Early adoption rate also influences the results in other areas, e.g. the potential impacts of vehicle automation. So far, most of the interest in the uptake of fully automated, driverless vehicles has focused on private vehicles only, yet full automation could be beneficial for commercial vehicles too. This paper identifies the vehicle sectors that will likely be the earliest adopters of full automation. Total costs of ownership (TCO) analysis is used to compare the costs (and benefits) of vehicle automation for private vehicles among different income groups and commercial vehicles in the taxi and freight sectors in the UK. Commercial operations clearly benefit more from automation since the driver costs can be reduced substantially through automation. Among the private users, households with the highest income benefit more from automation because of their higher driving distances and higher perceived value of time, which can be used more productively through full automation

    Revision of the EU Green Public Procurement Criteria for Transport

    Get PDF
    Public authorities' expenditures in the purchase of goods, services and works (excluding utilities and defence) constitute approximately 14% of the overall Gross Domestic Product (GDP) in Europe, accounting for roughly EUR 1.8 trillion annually. Thus, public procurement has the potential to provide significant leverage in seeking to influence the market and to achieve environmental improvements in the public sector. This effect can be particularly significant for goods, services and works (referred to collectively as products) that account for a high share of public purchasing combined with the substantial improvement potential for environmental performance. The European Commission has identified (road) transport as one such product group. Road transport covers a wide scope of vehicles (cars, LCVs, L-category vehicles, buses and waste collection vehicles) and services (mobility services, public bus services, waste collection services and post and courier services). The main environmental issues at the use phase addressed by the criteria are GHG emissions, air pollutant emissions and noise emissions. The impacts from the manufacture of batteries used in electric vehicle are also considered, leading to criteria on minimum and extended warranty of batteries. This revision has coincided with the evaluation of the Clean Vehicle Directive and the introduction of new test procedures to measure CO2 and air pollutant emissions of vehicles (WLTP, Real Drive Emissions in Euro 6). All these policies have been taken into account in the revision process of the EU GPP criteria for transport, to ensure a full harmonisation of the EU policies.JRC.B.5-Circular Economy and Industrial Leadershi
    • …
    corecore