20,311 research outputs found

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Smartphone apps usage patterns as a predictor of perceived stress levels at workplace

    Full text link
    Explosion of number of smartphone apps and their diversity has created a fertile ground to study behaviour of smartphone users. Patterns of app usage, specifically types of apps and their duration are influenced by the state of the user and this information can be correlated with the self-reported state of the users. The work in this paper is along the line of understanding patterns of app usage and investigating relationship of these patterns with the perceived stress level within the workplace context. Our results show that using a subject-centric behaviour model we can predict stress levels based on smartphone app usage. The results we have achieved, of average accuracy of 75% and precision of 85.7%, can be used as an indicator of overall stress levels in work environments and in turn inform stress reduction organisational policies, especially when considering interrelation between stress and productivity of workers

    On the Feature Discovery for App Usage Prediction in Smartphones

    Full text link
    With the increasing number of mobile Apps developed, they are now closely integrated into daily life. In this paper, we develop a framework to predict mobile Apps that are most likely to be used regarding the current device status of a smartphone. Such an Apps usage prediction framework is a crucial prerequisite for fast App launching, intelligent user experience, and power management of smartphones. By analyzing real App usage log data, we discover two kinds of features: The Explicit Feature (EF) from sensing readings of built-in sensors, and the Implicit Feature (IF) from App usage relations. The IF feature is derived by constructing the proposed App Usage Graph (abbreviated as AUG) that models App usage transitions. In light of AUG, we are able to discover usage relations among Apps. Since users may have different usage behaviors on their smartphones, we further propose one personalized feature selection algorithm. We explore minimum description length (MDL) from the training data and select those features which need less length to describe the training data. The personalized feature selection can successfully reduce the log size and the prediction time. Finally, we adopt the kNN classification model to predict Apps usage. Note that through the features selected by the proposed personalized feature selection algorithm, we only need to keep these features, which in turn reduces the prediction time and avoids the curse of dimensionality when using the kNN classifier. We conduct a comprehensive experimental study based on a real mobile App usage dataset. The results demonstrate the effectiveness of the proposed framework and show the predictive capability for App usage prediction.Comment: 10 pages, 17 figures, ICDM 2013 short pape
    • …
    corecore