20 research outputs found

    Energy Harvesting from Roadways

    Get PDF
    AbstractThis paper presents a preview of an ongoing study to develop an energy harvesting system based on piezoelectric elements embedded into the pavements structure. The system development involved designing and testing a number of prototypes in the laboratory under controlled stress conditions. In addition, it involved numerical modeling of the stress distribution in the power generation module and economic analysis of the value of the electric power generated, under a given traffic composition scenario. The results available to date suggest that this technology shows promise in powering LED traffic lights and wireless sensors embedded into pavement structures

    Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems

    Get PDF
    The convergence of concerns about environmental quality, economic vitality, social equity, and climate change have led to vast interest in the concept of sustainability. Energy harvesting from roadways is an innovative way to provide green and renewable energy for sustainable transportation. However, energy harvesting technologies are in their infancy, so limited studies were conducted to evaluate their performance. This article introduces innovative electromagnetic energy harvesting technology that includes two different mechanisms to generate electrical power: a cantilever generator mechanism and a rotational mechanism. Laboratory experimental tests were conducted to examine the performance of the two mechanisms in generating power under different simulated traffic conditions. The experimental results had approximately root mean square power 0.43 W and 0.04 W and maximum power of 2.8 W and 0.25 W for cantilever and rotational, respectively. These results showed promising capability for both mechanisms in generating power under real traffic conditions. In addition, the study revealed the potential benefits of energy harvesting from roadways to support sustainability in transportation systems. Overall, the findings show that energy harvesting can impact sustainable transportation systems significantly. However, further examination of the large-scale effects of energy harvesting from roadways on sustainability is needed. Document type: Articl

    Special issue: Functionalized and smart asphalt mixtures via the modification/application of nano/micromaterials

    Get PDF
    Asphalt pavements are designed to resist weathering and road traffic while guaranteeing safe and comfortable driving conditions at low cost and with minimal environmental impact [...]This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/04650/2020 and UIDB/04029/2020 and also under the projects of MicroCoolPav project EXPL/EQU-EQU/1110/2021, and NanoAir project PTDC/FISMAC/6606/2020

    Studi Awal Implementasi Transduser Piezoelektrik sebagai Piranti Pemanen Energi pada Lantai

    Get PDF
    Penelitian ini merupakan studi awal implementasi transduser piezoelektrik pada sebuah piranti pemanen energi berupa lantai piezo. Studi awal yang dilakukan yaitu dengan mengukur tegangan yang dihasilkan dari transduser ketika diterapkan tekanan dengan variasi frekuensi dan material piezoelektrik yang digunakan. Pada penelitian ini, transduser piezoelektrik yang digunakan yaitu elemen piezo dari material keramik polikristal dan piezo vibration sensordari meterial PVDF (polyvinylidenfluoride). Tekanan yang diberikan secara periodik divarisi pada 60 bpm (beat per minute), 80 bpm, 100 bpm, 120 bpm, dan 140 bpm dengan bantuan aplikasi metronome. Tegangan diukur dengan menggunakan multimeter digital. Berdasarkan hasil pengamatan, diperoleh nilai tegangan tertinggi pada frekuensi 60 bpm. Sedangkan untuk perbandingan tegangan yang dihasilkan oleh dua material transduser yang berbeda,bahan keramik polikristalin menghasilkan rerata tegangan yang lebih besar daripada material pvdf.Rerata tegangan yang dihasilkan oleh transduser piezoelektrik keramik sebesar 974,4 mV pada frekuensi 60 bpm dan 707,3 mV pada frekuensi 80 bp

    Energy-generating plate with electric machine unit on the basis of step engines

    Get PDF
    Розробка альтернативних малопотужних поновлюваних джерел електроенергії, які не впливають на навколишнє середовище (зелені джерела енергії) є актуальним науково-технічним завданням. Для його вирішення розглядаються і застосовуються цілі комплекси заходів. При цьому використовуються різноманітні методи і способи перетворення різних видів енергії в електричну. Актуальними є ті системи і пристрої, які можуть легко бути змонтовані і встановлені в будь-якому місці. Такі поновлювані джерела енергії повинні частково або повністю покрити потреби в електроенергії певного об'єкту. Метою роботи є дослідження процесу генерації електроенергії енергогенеруючою плиткою – альтернативним, поновлюваним джерелом електроенергії – в залежності від кількості крокових двигунів та схеми їх підключення в електромашинному вузлу. Використовувались методи проведення та обробки експериментальних досліджень, методи теорія електроприводу та методи розрахунку електричних кіл. Розроблено дослідний зразок енергогенеруючої плитки з електромашинним вузлом, який може працювати з одним або двома кроковими двигунами для генерації електроенергії. Представлено результати експериментальних досліджень у вигляді осцилограм залежності напруги від часу. За отриманими експериментальними даними проведено їх обробку та аналітичні обчислення, результати яких представлені у вигляді графіків залежності потужності від часу. Визначено, що підключення двох крокових двигунів до електромашинного вузла енергогенеруючої плитки дозволяє підвищити значення згенерованої електроенергії приблизно в 3,9 рази. Один крок на енергогенеруючу плитку генерує в середньому 1,16 Вт електроенергії. Визначено, що кількість згенерованої енергії в більшій мірі залежить не від ваги людини, а від того, як швидко (різко) виконується крок. Чим швидше темп ходьби і більш різко виконуються кроки, тим більше енергії генерується. З огляду на дані експериментальних досліджень енергогенеруючої плитки і знаючи щільність людського потоку, можна, оцінити її потенціал. Тобто, яку кількість електроенергії вона може згенерувати за певний час своєї роботи. Це допоможе визначити потрібну кількість плиток для забезпечення потреб в електричній енергії конкретного об'єкта.The development of alternative low-power renewable sources of energy that do not affect the environment (green energy sources) is a topical scientific and technical task. In order to solve it, the whole complex of measures are considered and applied. Various ways and methods for converting various types of energy into electricity are used. The systems and devices that can easily be assembled and installed anywhere are co nsidered to be the most relevant. Such renewable sources of energy must partially or fully cover the electricity needs of a particular facility. The aim of the work is to study the process of generating electricity by power generating plates - an alternative, renewable source of electricity - depending on the number of stepper motors and the scheme of their connection in the electric machine unit. The methods for conducting and processing experimental research, met hods of electric drive theory and methods for calculating electrical circuits were used. A prototype of an energy generating plate with an electric machine unit that can work with one or two engines to generate electricity has been developed. The results of experimental studies are presented in the form of oscillograms of the dependence of voltage on time. According to the obtained experimental data, their processing and analytical calculations were carried out, the results of which are presented in the form of graphs of power versus time. It was determined that the connection of two stepper motors to the electric machine unit of the power generating plate allows increasing the value of the generated electricity by about 3.9 times. One step on the power generating plate generates an average of 1.16 watts of electricity. It has been determined that the amount of generated energy to a greater extent depends not on the weight of the person, but on how quickly (abruptly) the step is performed. The faster the pace of walking and the sharper the steps, the more energy is generated. Considering the data of experimental studies of the power generating plate and knowing the density of the human flow, it is possible to evaluate its potential, i.e. the amount of electricity that it can generate for a certain time. This will help determine the right amount of plates to meet the electrical energy needs of a particular object

    Electrical Response Analysis of a Piezoelectric Energy Harvester Power Source Based on Electromechanical Parameters

    Get PDF
    A piezoelectric energy harvester generator is a device capable of transforming environmental mechanical energy into electrical energy. The piezoelectric electromechanical parameters determine the maximum electrical power which is able to be transferred to an electric load. In this research work, an exhaustive study of the electromechanical parameters related to the piezoelectric material is carried out, modeling them as components of an electrical circuit, in order to analyze their influence on the transmitted power. On the other hand, some electrical loads are simulated to determine different matrix scenarios for a model developed by state-space equations in the Laplace transform domain. The results obtained have allowed to know how the piezoelectric material properties and mechanical characteristics influence the electrical power output of the energy harvester generator and the energy transmission behavior for different electric loads. The conclusions show how the different electromechanical parameters are related to each other, and how their combination transforms the mechanical environmental energy into the required electrical energy. The novelty of this research is the presentation of a model capable of obtaining the optimized working point of the harvester, taking into account not only the electric loads and current demands but also the piezoelectric material parameters.This research was funded by the European Commission, grant number 869884-RECLAIM

    Harvesting Energy from Pavement – Electromagnetic Approach

    Get PDF
    Roadway pavements have a great potential to be a renewable energy source. Because they are continuously subjected to solar radiation and kinetic energy from passing vehicles. In this study, a prototype was developed to harvest passing vehicle kinetic energy by using electromagnetic technology. The prototype was fabricated by mechanical components including top plate, racks, pinions, one-way clutches, shafts, compression springs and generator. The prototype uses deflection generated by passing vehicles and converts it to rotations in shaft that triggers an embedded generator. A performance of the prototype in generating electrical power was evaluated with laboratory tests by using UTM and simulating traffic conditions. The output powers were measured by different magnitudes of the loads, times of loading and times of unloading. The experimental results show promising in generating power by the proposed prototype with a maximum average power of 3.21 mWatt

    Preliminary Study on the Potential of Harvesting Energy from Malaysian Road Pavement

    Get PDF
    Unused energy occurred at the pavement in the form of solar radiation, vibration and stress have the potential to be converted into more useful energy mainly into electrical energy. It is an alternative way to produce renewable energy source for electricity generation in order to replace the depleting non-renewable energy resources. This paper is to review and evaluate different methods of harvesting energy from road pavement as well as to identify the most promising method to be used for Malaysia road. Evaluation on the efficiency and cost-analysis are done based on the information of current harvesting energy technologies which are piezoelectric and photovoltaic energy harvesters. Secondary data such as average daily traffic (ADT) in Malaysia expressways and average annual solar radiation in Malaysia are collected in order to identify the real potential of harvesting energy from Malaysia pavement

    Electrical Performance of a Piezo-inductive Device for Energy Harvesting with Low-Frequency Vibrations

    Get PDF
    This study presents the experimental evaluation of a piezo-inductive mechanical system for applications of energy harvesting with low-frequency vibrations. The piezo-inductive vibration energy harvester (PI-VEH) device is composed of a voice coil motor (VCM) extracted from a hard disk drive. The proposed design allows the integration of different element types as beams and masses. The dynamic excitations in the system produce a pendular motion carried out by a hybrid arm (rigid-flexible) that generates energy with the rotations (with a coil) and the beam strains (with a piezoelectric material). The electrical assessment was performed through different working modes classified as inductive, inductive with magnetic instabilities, and piezo-inductive. The instabilities in the harvester refer to external forces induced by two magnets that repel each other. The first two inductive configurations were designed as a function of three parameters (length, mass, instability angle) to debug these using the maximum output voltage. The selected experiments were conducted in a piezo-inductive configuration. The results showed two effects on the output voltage-the first one is related to a system without resonances (higher broadband), and the second effect is associated with a multi-resonant system. As a final conclusion, it is pointed out that the electrical performance can be improved with the magnetic instabilities since these considerably amplified the output voltages

    Smart Materials and Devices for Energy Harvesting

    Get PDF
    This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds
    corecore