8 research outputs found

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Performance analysis of power-splitting relaying protocol in SWIPT based cooperative NOMA systems

    Get PDF
    This paper investigates a relay assisted simultaneous wireless information and power transfer (SWIPT) for downlink in cellular systems. Cooperative non-orthogonal multiple access (C-NOMA) is employed along with power splitting protocol to enable both energy harvesting (EH) and information processing (IP). A downlink model consists of a base station (BS) and two users is considered, in which the near user (NU) is selected as a relay to forward the received signal from the BS to the far user (FU). Maximum ratio combining is then employed at the FU to combine both the signals received from the BS and NU. Closed form expressions of outage probability, throughput, ergodic rate and energy efficiency (EE) are firstly derived for the SWIPT based C-NOMA considering both scenarios of with and without direct link between the BS and FU. The impacts of EH time, EH efficiency, power-splitting ratio, source data rate and distance between different nodes on the performance are then investigated. The simulation results show that the C-NOMA with direct link achieves an outperformed performance over C-NOMA without direct link. Moreover, the performance of C-NOMA with direct link is also higher than that for OMA. Specifically, (1) the outage probability for C-NOMA in both direct and relaying link cases is always lower than that for OMA. (2) the outage probability, throughput and ergodic rate vary according to β, (3) the EE of both users can obtain in SNR range of from -10 to 5 dB and it decreases linearly as SNR increases. Numerical results are provided to verify the findings

    Time allocation optimization and trajectory design in UAV-assisted energy and spectrum harvesting network

    Get PDF
    The scarcity of energy resources and spectrum resources has become an urgent problem with the exponential increase of communication devices. Meanwhile, unmanned aerial vehicle (UAV) is widely used to help communication network recently due to its maneuverability and flexibility. In this paper, we consider a UAV-assisted energy and spectrum harvesting (ESH) network to better solve the spectrum and energy scarcity problem, where nearby secondary users (SUs) harvest energy from the base station (BS) and perform data transmission to the BS, while remote SUs harvest energy from both BS and UAV but only transmit data to UAV to reduce the influence of near-far problem. We propose an unaligned time allocation scheme (UTAS) in which the uplink phase and downlink phase of nearby SUs and remote SUs are unaligned to achieve more flexible time schedule, including schemes (a) and (b) in remote SUs due to the half-duplex of energy harvesting circuit. In addition, maximum throughput optimization problems are formulated for nearby SUs and remote SUs respectively to find the optimal time allocation. The optimization problem can be divided into three cases according to the relationship between practical data volume and theoretical throughput to avoid the waste of time resource. The expressions of optimal energy harvesting time and data transmission time of each node are derived. Lastly, a successive convex approximation based iterative algorithm (SCAIA) is designed to get the optimal UAV trajectory in broadcast mode. Simulation results show that the proposed UTAS can achieve better performance than traditional time allocation schemes
    corecore