31 research outputs found

    Energy Efficient User Association and Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations

    Full text link
    Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.Comment: to appear, IEEE Journal on Selected Areas in Communications, 201

    User Transmit Power Minimization through Uplink Resource Allocation and User Association in HetNets

    Full text link
    The popularity of cellular internet of things (IoT) is increasing day by day and billions of IoT devices will be connected to the internet. Many of these devices have limited battery life with constraints on transmit power. High user power consumption in cellular networks restricts the deployment of many IoT devices in 5G. To enable the inclusion of these devices, 5G should be supplemented with strategies and schemes to reduce user power consumption. Therefore, we present a novel joint uplink user association and resource allocation scheme for minimizing user transmit power while meeting the quality of service. We analyze our scheme for two-tier heterogeneous network (HetNet) and show an average transmit power of -2.8 dBm and 8.2 dBm for our algorithms compared to 20 dBm in state-of-the-art Max reference signal received power (RSRP) and channel individual offset (CIO) based association schemes

    Energy-efficient user association mechanism enabling fully hybrid spectrum sharing among multiple 5G cellular operators

    Get PDF
    Spectrum sharing (SS) is a promising solution to enhance spectrum utilization in future cellular systems. Reducing the energy consumption in cellular networks has recently earned tremendous attention from diverse stakeholders (i.e., vendors, mobile network operators (MNOs), and government) to decrease the CO2 emissions and thus introducing an environment-friendly wireless communication. Therefore, in this paper, joint energy-efficient user association (UA) mechanism and fully hybrid spectrum sharing (EE-FHSS) approach is proposed considering the quality of experience QoE (i.e., data rate) as the main constraint. In this approach, the spectrum available in the high and low frequencies (28 and 73 GHz) is sliced into three portions (licensed, semi-shared, and fully-shared) aims to serve the users (UEs) that belong to four operators in an integrated and hybrid manner. The performance of the proposed QoE-Based EE UA-FHSS is compared with the well-known maximum signal-to-interference-plus-noise ratio (max-SINR UA-FHSS). Numerical results show that remarkable enhancement in terms of EE for the four participating operators can be achieved while maintaining a high degree of QoE to the UEs

    A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-dense Networks

    Get PDF
    Heterogeneous ultra-dense networks enable ultra-high data rates and ultra-low latency through the use of dense sub-6 GHz and millimeter wave (mmWave) small cells with different antenna configurations. Existing work has widely studied spectral and energy efficiency in such networks and shown that high spectral and energy efficiency can be achieved. This article investigates the benefits of heterogeneous ultra-dense network architecture from the perspectives of three promising technologies, i.e., physical layer security, caching, and wireless energy harvesting, and provides enthusiastic outlook towards application of these technologies in heterogeneous ultra-dense networks. Based on the rationale of each technology, opportunities and challenges are identified to advance the research in this emerging network.Comment: Accepted to appear in IEEE Communications Magazin
    corecore