287 research outputs found

    Energy Efficient Hybrid Edge Caching Scheme for Tactile Internet in 5G

    Get PDF
    Faster, wider bandwidth and better user experience, 5G is our vision for the future wireless communication. And the Tactile Internet, with ultra low latency, high availability, reliability, and security, is going to bring us the unprecedented real-time interactions just like the human sensing. In this paper, we focus on the solving problem of energy efficiency improvement in proactive in-network caching. We design a hybrid edge caching scheme based on four existing methods taking effect in different parts of the network. We also put forward a cache replacement policy to match the hybrid caching scheme considering the popularity of cached files which obeys Zipf distribution. The simulation results show that our proposed methods can reduce latency and achieve better performance in overall energy efficiency than existing ones

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    迅速な災害管理のための即時的,持続可能,かつ拡張的なエッジコンピューティングの研究

    Get PDF
    本学位論文は、迅速な災害管理におけるいくつかの問題に取り組んだ。既存のネットワークインフラが災害による直接的なダメージや停電によって使えないことを想定し、本論文では、最新のICTを用いた次世代災害支援システムの構築を目指す。以下のとおり本論文は三部で構成される。第一部は、災害発生後の緊急ネットワーキングである。本論文では、情報指向フォグコンピューティング(Information-Centric Fog Computing)というアーキテクチャを提案し、既存のインフラがダウンした場合に臨時的なネットワーク接続を提供する。本論文では、六次の隔たり理論から着想を得て、緊急時向け名前ベースルーティング(Name-Based Routing)を考慮した。まず、二層の情報指向フォグコンピューティングネットワークモデルを提案した。次に、ソーシャルネットワークを元に、情報指向フォグノード間の関係をモデリングし、名前ベースルーティングプロトコルをデザインする。シミュレーション実験では、既存のソリューションと比較し、提案手法はより高い性能を示し、有用性が証明された。第二部は、ネットワークの通信効率の最適化である。本論文は、第一部で構築されたネットワークの通信効率を最適化し、ネットワークの持続時間を延ばすために、ネットワークのエッジで行われるキャッシングストラテジーを提案した。本論文では、まず、第一部で提案した二層ネットワークモデルをベースにサーバー層も加えて、異種ネットワークストラクチャーを構成した。次に、緊急時向けのエッジキャッシングに必要なTime to Live (TTL)とキャッシュ置換ポリシーを設計する。シミュレーション実験では、エネルギー消費とバックホールレートを性能指標とし、メモリ内キャッシュとディスクキャッシュの性能を比較した。結果では、メモリ内ストレージと処理がエッジキャッシングのエネルギーを節約し、かなりのワークロードを共有できることが示された。第三部は、ネットワークカバレッジの拡大である。本論文は、ドローンの関連技術とリアルタイム視覚認識技術を利用し、被災地のユーザ捜索とドローンの空中ナビゲーションを行う。災害管理におけるドローン制御に関する研究を調査し、現在のドローン技術と無人捜索救助に対する実際のニーズを考慮すると、軽量なソリューションが緊急時に必要であることが判明した。そのため本論文では、転移学習を利用し、ドローンに搭載されたオンボードコンピュータで実行可能な空中ビジョンに基づいたナビゲーションアプローチを開発した。シミュレーション実験では、1/150ミニチュアモデルを用いて、空中ナビゲーションの実行可能性をテストした。結果では、本論文で提案するドローンの軽量ナビゲーションはフィードバックに基づいてリアルタイムに飛行の微調整を実現でき、既存手法と比較して性能において大きな進歩を示した。This dissertation mainly focuses on solving the problems in agile disaster management. To face the situation when the original network infrastructure no longer works because of disaster damage or power outage, I come up with the idea of introducing different emerging technologies in building a next-generation disaster response system. There are three parts of my research. In the first part of emergency networking, I design an information-centric fog computing architecture to fast build a temporary emergency network while the original ones can not be used. I focus on solving name-based routing for disaster relief by applying the idea from six degrees of separation theory. I first put forward a 2-tier information-centric fog network architecture under the scenario of post-disaster. Then I model the relationships among ICN nodes based on delivered files and propose a name-based routing strategy to enable fast networking and emergency communication. I compare with DNRP under the same experimental settings and prove that my strategy can achieve higher work performance. In the second part of efficiency optimization, I introduce the idea of edge caching in prolong the lifetime of the rebuilt network. I focus on how to improve the energy efficiency of edge caching using in-memory storage and processing. Here I build a 3-tier heterogeneous network structure and propose two edge caching methods using different TTL designs & cache replacement policies. I use total energy consumption and backhaul rate as the two metrics to test the performance of the in-memory caching method and compare it with the conventional method based on disk storage. The simulation results show that in-memory storage and processing can help save more energy in edge caching and share a considerable workload in percentage. In the third part of coverage expansion, I apply UAV technology and real-time image recognition in user search and autonomous navigation. I focus on the problem of designing a navigation strategy based on the airborne vision for UAV disaster relief. After the survey of related works on UAV fly control in disaster management, I find that in consideration of the current UAV manufacturing technology and actual demand on unmanned search & rescue, a lightweight solution is in urgent need. As a result, I design a lightweight navigation strategy based on visual recognition using transfer learning. In the simulation, I evaluate my solutions using 1/150 miniature models and test the feasibility of the navigation strategy. The results show that my design on visual recognition has the potential for a breakthrough in performance and the idea of UAV lightweight navigation can realize real-time flight adjustment based on feedback.室蘭工業大学 (Muroran Institute of Technology)博士(工学

    Beyond 5G Networks: Integration of Communication, Computing, Caching, and Control

    Get PDF
    In recent years, the exponential proliferation of smart devices with their intelligent applications poses severe challenges on conventional cellular networks. Such challenges can be potentially overcome by integrating communication, computing, caching, and control (i4C) technologies. In this survey, we first give a snapshot of different aspects of the i4C, comprising background, motivation, leading technological enablers, potential applications, and use cases. Next, we describe different models of communication, computing, caching, and control (4C) to lay the foundation of the integration approach. We review current state-of-the-art research efforts related to the i4C, focusing on recent trends of both conventional and artificial intelligence (AI)-based integration approaches. We also highlight the need for intelligence in resources integration. Then, we discuss integration of sensing and communication (ISAC) and classify the integration approaches into various classes. Finally, we propose open challenges and present future research directions for beyond 5G networks, such as 6G.Comment: This article has been accepted for inclusion in a future issue of China Communications Journal in IEEE Xplor

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Resource Management in Multi-Access Edge Computing (MEC)

    Get PDF
    This PhD thesis investigates the effective ways of managing the resources of a Multi-Access Edge Computing Platform (MEC) in 5th Generation Mobile Communication (5G) networks. The main characteristics of MEC include distributed nature, proximity to users, and high availability. Based on these key features, solutions have been proposed for effective resource management. In this research, two aspects of resource management in MEC have been addressed. They are the computational resource and the caching resource which corresponds to the services provided by the MEC. MEC is a new 5G enabling technology proposed to reduce latency by bringing cloud computing capability closer to end-user Internet of Things (IoT) and mobile devices. MEC would support latency-critical user applications such as driverless cars and e-health. These applications will depend on resources and services provided by the MEC. However, MEC has limited computational and storage resources compared to the cloud. Therefore, it is important to ensure a reliable MEC network communication during resource provisioning by eradicating the chances of deadlock. Deadlock may occur due to a huge number of devices contending for a limited amount of resources if adequate measures are not put in place. It is crucial to eradicate deadlock while scheduling and provisioning resources on MEC to achieve a highly reliable and readily available system to support latency-critical applications. In this research, a deadlock avoidance resource provisioning algorithm has been proposed for industrial IoT devices using MEC platforms to ensure higher reliability of network interactions. The proposed scheme incorporates Banker’s resource-request algorithm using Software Defined Networking (SDN) to reduce communication overhead. Simulation and experimental results have shown that system deadlock can be prevented by applying the proposed algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC platforms. Additionally, this research explores the use of MEC as a caching platform as it is proclaimed as a key technology for reducing service processing delays in 5G networks. Caching on MEC decreases service latency and improve data content access by allowing direct content delivery through the edge without fetching data from the remote server. Caching on MEC is also deemed as an effective approach that guarantees more reachability due to proximity to endusers. In this regard, a novel hybrid content caching algorithm has been proposed for MEC platforms to increase their caching efficiency. The proposed algorithm is a unification of a modified Belady’s algorithm and a distributed cooperative caching algorithm to improve data access while reducing latency. A polynomial fit algorithm with Lagrange interpolation is employed to predict future request references for Belady’s algorithm. Experimental results show that the proposed algorithm obtains 4% more cache hits due to its selective caching approach when compared with case study algorithms. Results also show that the use of a cooperative algorithm can improve the total cache hits up to 80%. Furthermore, this thesis has also explored another predictive caching scheme to further improve caching efficiency. The motivation was to investigate another predictive caching approach as an improvement to the formal. A Predictive Collaborative Replacement (PCR) caching framework has been proposed as a result which consists of three schemes. Each of the schemes addresses a particular problem. The proactive predictive scheme has been proposed to address the problem of continuous change in cache popularity trends. The collaborative scheme addresses the problem of cache redundancy in the collaborative space. Finally, the replacement scheme is a solution to evict cold cache blocks and increase hit ratio. Simulation experiment has shown that the replacement scheme achieves 3% more cache hits than existing replacement algorithms such as Least Recently Used, Multi Queue and Frequency-based replacement. PCR algorithm has been tested using a real dataset (MovieLens20M dataset) and compared with an existing contemporary predictive algorithm. Results show that PCR performs better with a 25% increase in hit ratio and a 10% CPU utilization overhead
    corecore