14 research outputs found

    Energy Efficient Design of Wireless Ad Hoc Networks

    Get PDF
    The concept of wireless is not new. When the packet switching technology, the fabric of the Internet was introduced by the Department of Defense, the ARPANET ,it understood the potential of packet switched radio technology to interconnect mobile nodes .The DARPA around early 70’s helped establish the base of ad hoc wireless networking. This is a technology that enables untethered wireless networking environments where there is no wired or cellular infrastructure. Wireless Ad hoc Networks since then is a fast developing research area with a vast spectrum of applications. Wireless sensor network systems enable the reliable monitoring of a variety of environments for both civil and military applications. The Energy efficiency continues to be a key factor in limiting the deployability of ad-hoc networks. Deploying an energy efficient system exploiting the maximum lifetime of the network has remained a great challenge since years. The time period from the instant at which the network starts functioning to the time instant at which the first network node runs out of energy, i.e. the network lifetime is largely dependent on the system energy efficiency. This thesis looks at energy efficient protocols, which can have significant impact on the lifetime of these networks. The cluster heads get drain out maximum energy in the wireless ad hoc networks. The proposed algorithm deals with minimizing the rate of dissipation of energy of cluster heads. The algorithm LEAD deals with energy efficient round scheduling of cluster head followed by allocation of nodes to the cluster heads maximizing network lifetime using ANDA

    Overlapping Multi-hop Clustering for Wireless Sensor Networks

    Full text link
    Clustering is a standard approach for achieving efficient and scalable performance in wireless sensor networks. Traditionally, clustering algorithms aim at generating a number of disjoint clusters that satisfy some criteria. In this paper, we formulate a novel clustering problem that aims at generating overlapping multi-hop clusters. Overlapping clusters are useful in many sensor network applications, including inter-cluster routing, node localization, and time synchronization protocols. We also propose a randomized, distributed multi-hop clustering algorithm (KOCA) for solving the overlapping clustering problem. KOCA aims at generating connected overlapping clusters that cover the entire sensor network with a specific average overlapping degree. Through analysis and simulation experiments we show how to select the different values of the parameters to achieve the clustering process objectives. Moreover, the results show that KOCA produces approximately equal-sized clusters, which allows distributing the load evenly over different clusters. In addition, KOCA is scalable; the clustering formation terminates in a constant time regardless of the network size

    Influence of the Data-Fusion to Clustering Lifetime in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are wireless networks composed of spatially distributed autonomous devices using sensors to cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants, at different locations. This paper deals with the influence to data fusion of part of the relevant data on clustering network in the wireless sensor networks (WSN). According to the results of the study, the nodes' energy consumption largely depends on their location: although some of the nodes are comparatively far from sink node, they may consume more energy. The study results further show that there is a trade-off between the total energy consumption of the networks and the network lifetime, i.e. even if the total energy consumption of the networks reaches its minimum, the network lifetime is not necessarily the longest

    OPEN: Optimized Path Planning Algorithm with Energy Efficiency and Extending Network - Lifetime in WSN

    Full text link

    Energy Trade-offs for end-to-end Communications in Urban Vehicular Networks exploiting an Hyperfractal Model

    Get PDF
    International audienceWe present results on the trade-offs between the end-to-end communication delay and energy spent for completing a transmission in vehicular communications in urban settings. This study exploits our innovative model called " hyperfractal " that captures the self-similarity of the topology and vehicle locations in cities. We enrich the model by incorporating roadside infrastructure. We use analytical tools to derive theoretical bounds for the end-to-end communication hop count under two different energy constraints: either total accumulated energy, or maximum energy per node. More precisely, we prove that the hop count is bounded by O(n 1−α /(d m −1)) where α 2 is the precise hyperfractal dimension. This proves that for both constraints the energy decreases as we allow to chose among paths of larger length. In fact the asymptotic limit of the energy becomes significantly small when the number of nodes becomes asymptotically large. A lower bound on the network throughput capacity with constraints on path energy is also given. The results are confirmed through exhaustive simulations using different hyperfractal dimensions and path loss coefficients

    A Survey on Wireless Network Applications in Automated Public Utilities Control and Management, Journal of Telecommunications and Information Technology, 2015, nr 3

    Get PDF
    Public utilities such as water, electricity and gas are essential services that play a vital role in economic and social development. Automation of public utility services addresses the huge losses faced by the utility services today, due to non-accounting of distributed utility resources. Automation improves government revenues. The different type of architectures are proposed and designed for automated metering, control and management of public utilities like water, gas, and electricity for effective management and control of resources. The various network topologies, hardware and software architectures to automation and management of public utilities are proposed by researchers. In this paper, the different technologies proposed by various researchers across the globe are surveyed and list of issues and challenges for automated meter reading and control of public utilities is identified

    Energy Efficient Designs for Collaborative Signal and Information Processing inWireless Sensor Networks

    Get PDF
    Collaborative signal and information processing (CSIP) plays an important role in the deployment of wireless sensor networks. Since each sensor has limited computing capability, constrained power usage, and limited sensing range, collaboration among sensor nodes is important in order to compensate for each other’s limitation as well as to improve the degree of fault tolerance. In order to support the execution of CSIP algorithms, distributed computing paradigm and clustering protocols, are needed, which are the major concentrations of this dissertation. In order to facilitate collaboration among sensor nodes, we present a mobile-agent computing paradigm, where instead of each sensor node sending local information to a processing center, as is typical in the client/server-based computing, the processing code is moved to the sensor nodes through mobile agents. We further conduct extensive performance evaluation versus the traditional client/server-based computing. Experimental results show that the mobile agent paradigm performs much better when the number of nodes is large while the client/server paradigm is advantageous when the number of nodes is small. Based on this result, we propose a hybrid computing paradigm that adopts different computing models within different clusters of sensor nodes. Either the client/server or the mobile agent paradigm can be employed within clusters or between clusters according to the different cluster configurations. This new computing paradigm can take full advantages of both client/server and mobile agent computing paradigms. Simulations show that the hybrid computing paradigm performs better than either the client/server or the mobile agent computing. The mobile agent itinerary has a significant impact on the overall performance of the sensor network. We thus formulate both the static mobile agent planning and the dynamic mobile agent planning as optimization problems. Based on the models, we present three itinerary planning algorithms. We have showed, through simulation, that the predictive dynamic itinerary performs the best under a wide range of conditions, thus making it particularly suitable for CSIP in wireless sensor networks. In order to facilitate the deployment of hybrid computing paradigm, we proposed a decentralized reactive clustering (DRC) protocol to cluster the sensor network in an energy-efficient way. The clustering process is only invoked by events occur in the sensor network. Nodes that do not detect the events are put into the sleep state to save energy. In addition, power control technique is used to minimize the transmission power needed. The advantages of DRC protocol are demonstrated through simulations

    Research routing and MAC based on LEACH and S-MAC for energy efficiency and QoS in wireless sensor network

    Get PDF
    The wireless sensor is a micro-embedded device with weak data processing capability and small storage space. These nodes need to complete complex jobs, including data monitoring, acquisition and conversion, and data processing. Energy efficiency should be considered as one of the important aspects of the Wireless Sensor Network (WSN) throughout architecture and protocol design. At the same time, supporting Quality of Service (QoS) in WSNs is a research field, because the time-sensitive and important information is expected for the transmitting to to the sink node immediately. The thesis is supported by the projects entitled “The information and control system for preventing forest fires”, and “The Erhai information management system”, funded by the Chinese Government. Energy consumption and QoS are two main objectives of the projects. The thesis discusses the two aspects in route and Media Access Control (MAC). For energy efficiency, the research is based on Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. LEACH is a benchmark clustering routing protocol which imposes upon cluster heads to complete a lot of aggregation and relay of messages to the base-station. However, there are limitations in LEACH. LEACH does not suit a wide area in clustering strategy and multi-hop routing. Moreover, routing protocols only focus on one factor, combining the clustering strategy and multi-hop routing mechanism were not considered in routing protocol for performance of network. QoS is supported by the MAC and routing protocol. Sensor MAC(S-MAC) makes the use of the periodically monitoring / sleeping mechanism, as well as collision and crosstalk avoidance mechanism. The mechanism reduces energy costs. Meanwhile, it supports good scalability and avoids the collision. However, the protocols do not take the differentiated services. For supporting QoS,A new route protocol needs to be designed and realized on embed platforms, which has WIFI mode and a Linux operation system to apply on the actual system. This research project was conducted as following the steps: A new protocol called RBLEACH is proposed to solve cluster on a widely scale based on LEACH. The area is divided into a few areas, where LEACH is improved to alter the selecting function in each area. RBLEACH creates routes selected by using a new algorithm to optimize the performance of the network. A new clustering method that has been developed to use several factors is PS-ACO-LEACH. The factors include the residual energy of the cluster head and Euclidean distances between cluster members and a cluster head. It can optimally solve fitness function and maintain a load balance in between the cluster head nodes, a cluster head and the base station. Based on the “Ant Colony” algorithm and transition of probability, a new routing protocol was created by “Pheromone” to find the optimal path of cluster heads to the base station. This protocol can reduce energy consumption of cluster heads and unbalanced energy consumption. Simulations prove that the improved protocol can enhance the performance of the network, including lifetime and energy conservation. Additionally, Multi Index Adaptive Routing Algorithm (MIA-QR) was designed based on network delay, packet loss rate and signal strength for QoS. The protocol is achieved by VC on an embedded Linux system. The MIA-QR is tested and verified by experiment and the protocol is to support QoS. Finally, an improved protocol (SMAC -SD) for wireless sensor networks is proposed, in order to solve the problem of S-MAC protocol that consider either service differentiation or ensure quality of service. According to service differentiation, SMAC-SD adopts an access mechanism based on different priorities including the adjustment of priority mechanisms of channel access probability, channel multi-request mechanisms and the configuring of waiting queues with different priorities and RTS backoff for different service, which makes the important service receive high channel access probability, ensuring the transmission quality of the important service. The simulation results show that the improved protocol is able to gain amount of important service and shortens the delay at the same time. Meanwhile, it improves the performance of the network effectivel

    Optimisation de la consommation d'énergie par la prise en compte de la redondance de mesure dans les réseaux de capteurs

    Get PDF
    Les réseaux de capteurs sans fil sont utilisés aujourd'hui dans de nombreuses applications qui incluent notamment : la domotique, la santé, le domaine militaire ou encore la surveillance de phénomènes environnementaux. Toutefois, le dénominateur commun de toutes les applications de réseaux de capteurs reste la limite des capteurs en raison de leurs ressources matérielles limitées dont la plus contraignante est l'énergie. Cette thèse a pour objectif d'étudier les techniques permettant d'améliorer l'efficacité énergétique des réseaux de capteurs sans fil denses. Deux nouvelles techniques sont proposées. La première approche développée dans cette thèse concerne la conservation d'énergie fondée sur redondance de mesure. Le protocole proposé MR-LEACH (Measurement Redundancy aware LEACH) s'adresse à la problématique posée par l'absence de gestion efficace d'énergie au sein des grands réseaux de capteurs hiérarchiques. MR-LEACH est une extension du protocole LEACH bien connue pour améliorer la consommation d'énergie dans les réseaux de capteurs. En plus de la formation du cluster selon le protocole LEACH, les nœuds sont regroupes en tenant compte de leur redondance et un seul nœud transmet à la fois les données dans chaque groupe redondant. Cette méthode a les avantages de présenter une faible consommation d'énergie, d'accroître la durée de vie du réseau et de réduire le délai de bout en bout. Le protocole OER (Optimization of Energy based on Redundancy) est la seconde contribution de cette thèse. L'objectif est double. Nous proposons tout d'abord une méthode de partitionnement de réseaux de capteurs fondée sur les modèles de détection. Les modèles de détection estiment la manière dont un nœud est capable de détecter les phénomènes. Il s'agit ensuite de proposer un algorithme de recherche d'un partitionnement optimal. Nous nous sommes focalises sur la variation d'une fonction objectif. OER détermine si un partitionnement obtenu est meilleur pour minimiser la fonction objectif. Par la suite, l'impact de la recherche de solution optimale sur la durée de vie du réseau à été étudiée.Wireless Sensor Networks (WSN) are used today in many applications that differ in their own objectives and specific constraints. The application areas for wireless sensor networks are various: home automations, health care services, military domain, and environment monitoring. However the common challenge in designing WSN applications comes from the specific constraints of sensors because of their limited physical resources such as weak computational capability, small memory capacity and especially limited battery lifetime. This thesis aims to develop techniques to improve the energy efficiency of dense wireless sensor networks. Two new techniques are proposed. The first approach developed in this thesis concerns the energy conservation based on measurement redundancy. The proposed MR-LEACH (Measurement Redundancy aware LEACH) protocol address the main issue resulting from the absence of a energy efficient management within the large hierarchical wireless Sensor networks. MR-LEACH is an extension to the well-known LEACH protocol to improve energy consumption in cluster-based WSNs. In addition to cluster formation according to LEACH protocol, the nodes are grouped taking into account their redundancy and only a single node transmits data in each redundant group. This method have the advantages of presenting a low energy consumption, increasing the network lifetime and decreasing the end-to-end delay. OER (Optimization of Energy based on Redundancy) protocol is the second contribution of this thesis. There are two main objectives. Firstly, we propose a partitioning method for sensor networks based on sensing models. Sensing models estimate the manner in which a node is able to detect the phenomena. Secondly, we propose a search algorithm for finding an optimal partitioning. We focused on the variation of an objective function. OER determines whether a partitioning obtained is best to minimize the objective function. Thereafter, the impact of optimal solution search on network lifetime has been investigated
    corecore