818 research outputs found

    Energy Efficient Data Dissemination in Multi-UAV Coordinated Wireless Sensor Networks

    Get PDF

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    Formation coordination and network management of UAV networks using particle swarm optimization and software-defined networking

    Get PDF
    In recent years, with the growth in the use of Unmanned Aerial Vehicles (UAVs), UAV-based systems have become popular in both military and civil applications. The lack of reliable communication infrastructure in these scenarios has motivated the use of UAVs to establish a network as flying nodes, also known as UAV networks. However, the high mobility degree of flying and terrestrial users may be responsible for constant changes in nodes’ positioning, which makes it more challenging to guarantee their communication during the operational time. In this context, this work presents a framework solution for formation coordination and network management of UAVs, which aims to establish and maintain a set of relays units in order to provide a constant, reliable and efficient communication link among user nodes - which are performing individual or collaborative missions on its turn. Such a framework relies on a set of formation coordination algorithms - including the Particle Swarm Optimization (PSO) evolutionary algorithm -, and also considers the use of Software-defined Networking-based (SDN) communication protocol for network management. For coordination proposes, a novel particle selection criteria is proposed, which aims to guarantee network manageability of UAV formations, therefore being able to guarantee service persistence in case of nodes’ failure occurrence, as well as to provide required network performance, as a consequence. Simulations performed in OMNeT++ show the efficiency of the proposed solution and prove a promising direction of the solution for accomplishing its purposes.Em regiões de confrontos militares, em cenários pós-catástrofes naturais e, inclusive, em grandes áreas de cultivo agrícola, é comum a ausência de uma infra-estrutura préestabelecida de comunicação entre usuários durante a execução de uma ou mais operações eventuais. Nestes casos, Veículos Aéreos Não Tripulados (VANTs) podem ser vistos como uma alternativa para o estabelecimento de uma rede temporária durante essas missões. Para algumas aplicações, a alta mobilidade destes usuários podem trazem grandes desafios para o gerenciamento autônomo de uma estrutura de comunicação aérea, como a organização espacial dos nós roteadores e as políticas de encaminhamento de pacotes adotadas durante a operação. Tendo isso em vista, esse trabalho apresenta o estudo de uma solução que visa o estabelecimento e manutenção das conexões entre os usuários - nos quais executam tarefas individuais ou colaborativas -, através do uso de algoritmos de coordenação de formação - no qual inclui o algoritmo evolucionário Otimização por Enxame de Partículas -, e, também, de conceitos relacionados a Rede Definidas por Software para o gerenciamento da rede. Ainda, é proposto um novo critério de seleção das partículas do algoritmo evolucionário, visando garantir gerenciabilidade das topologias formadas e, consequentemente, a persistência do serviço em caso de falha dos nós roteadores, assim como o cumprimento de especificações desejadas para o desempenho da rede. Simulações em OMNeT++ mostraram a eficácia da proposta e sustentam o modelo proposto a fim de atingir seus objetivos

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Machine Learning for Wireless Connectivity and Security of Cellular-Connected UAVs

    Full text link
    Cellular-connected unmanned aerial vehicles (UAVs) will inevitably be integrated into future cellular networks as new aerial mobile users. Providing cellular connectivity to UAVs will enable a myriad of applications ranging from online video streaming to medical delivery. However, to enable a reliable wireless connectivity for the UAVs as well as a secure operation, various challenges need to be addressed such as interference management, mobility management and handover, cyber-physical attacks, and authentication. In this paper, the goal is to expose the wireless and security challenges that arise in the context of UAV-based delivery systems, UAV-based real-time multimedia streaming, and UAV-enabled intelligent transportation systems. To address such challenges, artificial neural network (ANN) based solution schemes are introduced. The introduced approaches enable the UAVs to adaptively exploit the wireless system resources while guaranteeing a secure operation, in real-time. Preliminary simulation results show the benefits of the introduced solutions for each of the aforementioned cellular-connected UAV application use case.Comment: This manuscript has been accepted for publication in IEEE Wireless Communication

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues
    corecore