71,009 research outputs found

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    Efficient Device to Device Communications Underlaying Heterogeneous Networks

    Get PDF
    Device-to-Device communications have the great potential to bring significant performance boost to the conventional heterogeneous network by reusing cellular resources. In cellular networks, Device-to-Device communication is defined as two user equipments in a close range communicating directly with each other without going through the base station, thus offloading cellular traffic from cellular networks. In addition to improve network spectral efficiency, D2D communication can also improve energy efficiency and user experience. However, the co-existence of D2D communication on the same spectrum with cellular users can cause severe interference to the primary cellular users. Thus the performance of cellular users must be assured when supporting underlay D2D users. In this work, we have investigated cross-layer optimization, resource allocation and interference management schemes to improve user experience, system spectral efficiency and energy efficiency for D2D communication underlaying heterogeneous networks. By exploiting frequency reuse and multi-user diversity, this research work aims to design wireless system level algorithms to utilize the spectrum and energy resources efficiently in the next generation wireless heterogeneous network

    ENERGY EFFICIENCY ANALYSIS FOR LTE-A HETEROGENEOUS CELLULAR NETWORK

    Get PDF
    Existing cellular network gives us the large network coverage as well as network capacity but in many cases it fails to achieve predicted data rates for the seamless wireless communication. Moreover there is a tremendous increase in wireless device users so the data rates and network capacity offered by conventional cellular network is not sufficient. So the effort to suppress base-stations power consumption are desperately needed and for that heterogeneous cellular network has been introduced. This paper provides the complete analysis of energy efficient wireless systems for heterogeneous cellular network as it has been pointed out to be one of the key network architectures that help to increase system capacity and reduce power consumption. Heterogeneous network with coordinated multi-point has received significant attention as a way of achieving energy efficiency and to improve the network handling capacity in heterogeneous cellular network. Usually in communication those users which are on the edge of the cells always suffer with the low data rates and low capacity. Moreover they get interference from the adjacent cells. To mitigate these problems and achieve higher energy efficiency Heterogeneous network with coordinated multi-point came out as one of the best solutions. In this paper heterogeneous network is considered with the Voronoi tessellation and between the cells coordinated multi-point technique is applied and compared with the non- coordinated multipoint scenario. Heterogeneous network is the integrated part of the beyond 4G wireless network for better energy efficiency

    Typical Heterogeneous Network Deployment in Green Cellular Networks

    Get PDF
    Energy efficiency in cellular networks is growing and emerging concern for cellular operators and it is called green cellular networks. It not only maintain profitability, but also to reduce the overall environment effects to give a green environment. This raising trend of achieving energy efficiency in cellular networks depends upon the heterogeneous network deployment motivating the standardization authorities. Network operators to continuously explore future technologies in order to bring improvements to the whole network infrastructure to give good and green infrastructure to the word. The survey of this article, we present a brief survey of methods to improve the power efficiency of cellular networks, exploit some new research issues and challenges and suggestion of some techniques to enable an energy efficient or "green" cellular network. All the base stations absorbs maximum portion of the total energy used in a cellular system, we will first provide a comparative survey on techniques to obtain energy savings in base stations. This record was migrated from the OpenDepot repository service in June, 2017 before shutting down

    Adaptive stochastic radio access selection scheme for cellular-WLAN heterogeneous communication systems

    Get PDF
    This study proposes a novel adaptive stochastic radio access selection scheme for mobile users in heterogeneous cellular-wireless local area network (WLAN) systems. In this scheme, a mobile user located in dual coverage area randomly selects WLAN with probability of ω when there is a need for downloading a chunk of data. The value of ω is optimised according to the status of both networks in terms of network load and signal quality of both cellular and WLAN networks. An analytical model based on continuous time Markov chain is proposed to optimise the value of ω and compute the performance of proposed scheme in terms of energy efficiency, throughput, and call blocking probability. Both analytical and simulation results demonstrate the superiority of the proposed scheme compared with the mainstream network selection schemes: namely, WLAN-first and load balancing

    Resource Allocation and Mode Selection in 5G Networks Based on Energy Efficient Game Theory Approach

    Get PDF
    With the advent of next-generation cellular networks, energy efficiency is becoming increasingly important. To tackle this issue, this paper investigates energy efficiency in D2D-enabled heterogeneous cellular networks. Boosting the longterm energy efficiency of wireless 5G communication networks is being explored through mode selection and resource allocation. The study proposed a three-stage process for energy-efficient mode selection and resource allocation. The process starts with cellular users who switch to D2D emitting a beacon and cellular users within close proximity reacting to it. A proposed auction mechanism will be enacted inside the group in the second state ( in this paper, the group size will be four). Next, each cellular user was classified according to SINR values, distance, and battery life, so that they could dynamically transition between standard cellular mode and D2D mode. For stage three, direct-hop hybrid D2D communication, we developed a TAMM double auction game model that efficiently splits resources. To identify the true bidders in our game model, we compute the median and mode values of the ASK and BID values received by both seller and buyer cellular users. A simulation study shows that the proposed method is energy-efficient in a heterogeneous network enabled by D2D

    Optimal resource scheduling for energy-efficient next generation wireless networks

    Get PDF
    Cellular networks can provide highly available and reliable communication links to the Internet of Things (IoT) applications, letting the connected Things paradigm gain much more momentum than ever. Also, the rich information collected from the Things with sensing capabilities can guide the network operator to an unforeseen direction, allowing the underlying cellular networks to be further optimized. In this regard, the cellular networks and IoT are conceived as the key components of the beyond-4G and future 5G networks. Therefore, in this dissertation, we study each of the two components in depth, focusing on how to optimize the networking resources for the quality service and better energy-efficiency. To begin with, we study the heterogeneous cellular network architecture which is a major enhancement to the current 4G network by means of the base station (BS) densification and traffic offloading. In particular, the densely deployed short-range, low-power smallcell base stations (SBSs) can significantly improve the frequency reuse, throughput performance and the energy-efficiency. We then study the heterogeneous C-RAN (cloud radio access network), which is one of the core enablers of the next generation 5G cellular networks. In particular, with the high availability provided by the long-range macro BS (MBS), the heterogeneous C-RAN (H-CRAN) can effectively enhance the overall resource utilization compared to the conventional C-RANs. In each study, we propose an optimal resource scheduling and service provisioning scheme to provide a quality service to users in a resource-efficient manner. In addition, we carry out two studies for the Internet of Things (IoT) networks operating with the IEEE 802.11ah standard. Specifically, we introduce energy-efficient device management algorithms for the battery-operated, resource-constrained IoT sensor devices to prolong their lifetime by optimally scheduling their activation. The enhanced power saving mechanism and the optimal sensing algorithm that we propose in each study can effectively improve both the energy-efficiency of the IoT devices and the lifetime of the entire network

    Energy Efficiency for 5G Multi-Tier Cellular Networks

    Get PDF
    The heterogeneous cellular network (HCN) is most significant as a key technology for future fifth-generation (5G) wireless networks. The heterogeneous network consists of randomly macrocell base stations (MBSs) overlaid with femtocell base stations (FBSs). Stochastic geometry has been shown to be a very powerful tool to model, analyze, and design networks with random topologies such as wireless ad hoc, sensor networks, and multi-tier cellular networks. HCNs can be energy-efficiently designed by deploying various BSs belonging to different networks, which has drawn significant attention to one of the technologies for future 5G wireless networks. In this chapter, we propose switching off/on systems enabling the BSs in the cellular networks to efficiently consume the power by introducing active/sleep modes, which is able to reduce the interference and power consumption in the MBSs and FBSs on an individual basis as well as improve the energy efficiency of the cellular networks. We formulate the minimization of the power consumption for the MBSs and FBSs as well as an optimization problem to maximize the energy efficiency subject to throughput outage constraints, which can be solved by the Karush-Kuhn-Tucker (KKT) conditions according to the femto tier BS density. We also formulate and compare the coverage probability and the energy efficiency in HCN scenarios with and without coordinated multi-point (CoMP) to avoid coverage holes
    • …
    corecore