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Abstract

The heterogeneous cellular network (HCN) is most significant as a key technology for
future fifth-generation (5G) wireless networks. The heterogeneous network consists of
randomly macrocell base stations (MBSs) overlaid with femtocell base stations (FBSs).
Stochastic geometry has been shown to be a very powerful tool to model, analyze, and
design networks with random topologies such as wireless ad hoc, sensor networks, and
multi-tier cellular networks. HCNs can be energy-efficiently designed by deploying
various BSs belonging to different networks, which has drawn significant attention to
one of the technologies for future 5G wireless networks. In this chapter, we propose
switching off/on systems enabling the BSs in the cellular networks to efficiently consume
the power by introducing active/sleep modes, which is able to reduce the interference
and power consumption in the MBSs and FBSs on an individual basis as well as improve
the energy efficiency of the cellular networks. We formulate the minimization of the
power consumption for the MBSs and FBSs as well as an optimization problem to
maximize the energy efficiency subject to throughput outage constraints, which can be
solved by the Karush-Kuhn-Tucker (KKT) conditions according to the femto tier BS
density. We also formulate and compare the coverage probability and the energy effi-
ciency in HCN scenarios with and without coordinated multi-point (CoMP) to avoid
coverage holes.

Keywords: heterogeneous cellular networks, stochastic geometry, poisson point pro-
cess (PPP), different sleeping policy, CoMP, energy efficiency, power consumption

1. Introduction

Looking ahead to the year 2020 and beyond, there will be explosive growth in mobile data

traffic. The existing cellular networks are experiencing some basic challenges such as higher

data rates, excellent end-to-end performance, user coverage in hot-spots and crowded areas

with lower latency energy consumption and amount of expenditure per information transfer.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The fifth-generation (5G) cellular networks are envisioned to overcome these challenges. It is

expected that 5G systems will have the ability to adopt a multi-tier architecture consisting of

macrocells, different types of licensed small cells, relays, and device-to-device (D2D) networks

to serve users with different quality-to-service (QoS) requirements in an energy efficient man-

ner [1]. It is expected that 5G wireless communication technologies will attain 1000 times

higher mobile data volume per unit area, 10–100 times number of connecting devices and

longevity of battery 10 times, user data rate, and 5 times reduced latency [2]. A key attribute

of 5G networks is that the expected cell data rate will be of the order of 10 Gb/s, whereas

average data rate for single 4G networks is 1 Gb/s. Therefore, such a heterogeneous cellular

network (HCN) architecture has drawn significant research attention and been recognized as a

key technology for future 5G wireless networks. An HCN consisting of K tiers [3] is consid-

ered, in which each tier models base stations (BSs) of a particular class such as femtocells,

picocells, microcells, or macrocells as shown in Figure 1a. The energy efficiency (EE) of small

cell networks is of great concern as the BS density will be significantly increased. We study that

Figure 1. (a) Heterogeneous cellular networks [11] and (b) switching system for BSs power consumption.
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the optimal energy efficiency of a two-tier heterogeneous network consists of a macrocell and

many small cells under coverage performance constraints for different deployments. The other

more important challenge is the greater energy consumption in HCNs because of the dense

and randomly deployment of femto BSs (FBSs). In order to realize the aspect of green wireless

networks, energy efficiency is an important tool. Because of the increasing share of wireless

systems, the total energy expended in communications and networking systems are deemed

important. Report shows that total amount of global carbon dioxide emission is originated

from information and communication technologies (ICT), more than 9% of emits from wireless

and mobile communication [4]. However, within the sleep mode, some key issues must be

considered. When BSs are switched off, radio coverage and QoS must be still guaranteed. As

BSs are densely deployed, users in sleeping BS coverage can be served by neighboring active

BSs by slightly increasing BS transmit power [5]. For sleep mode operation, small cells can

always be managed by operators. Nowadays, efforts have been made related to power saving

in cellular networks with the introduction of sleep modes [6–8] for BSs. Power consumption is

reduced by using sleep mode in low traffic [9] as a case study for saving the energy of macro

BSs (MBSs). In a wireless network where multiple links share the same radio spectrum, the

signal-to-interference-plus-noise ratio (SINR) at any receiver is a function of the locations of the

transmitting nodes and the transmit powers of the transmitters using the same channel.

Therefore, the network topology has a fundamental impact on the performance of wireless

networks. By assuming that the network operators have some information of the traffic usage

patterns, they can employ a coordinated sleeping mode [9], where certain MBSs will be shut

off, while others increase their coverage areas to avoid coverage hole [10].

Thus, we provide a stochastic geometry-based model for studying the BSs cooperation in

downlink HCNs, which consists of two tiers of located BSs where each tier is characterized by

different density and power and develops the performance of coverage probability. We investi-

gate the energy saving problem through switching off/on for MBS and FBS in HCNs. We also

derive two-tier HCNs under different sleeping policies and formulate the power consumption

minimization for MBS and FBS. An optimization problem is formulated to maximize the energy

efficiency subject to throughput outage constraints and solved by the Karush-Kuhn-Tucker

(KKT) conditions in terms of femto tier BS density. BSs in sleeping mode might cause coverage

holes, which have a negative impact on the connectivity of the network, combined coordinated

multi-point (CoMP) and BS sleeping scheme in HCNs for energy efficiency. We introduce the

energy efficiency performance based on two-state Markovian wireless channel model.

2. System model

We consider a HCN composed by K independent network tiers of BSs with different deploy-

ment densities and transmit powers in Figure 1a. We assume that the BSs in the ith tier are

spatially distributed as a Poisson point process (PPP) ϕ of density λ, transmit at a power Pi,

and have a SINR target of threshold T. The locations of the BSs in the two tiers are distributed

as two spatial PPPs in the R2 Euclidian space denoted by φM and φF, with densities λM and λF,

respectively. The probability density function (pdf) is given by f ðrÞ ¼ 2πλr exp ð−λπr2Þ.
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We focus on a typical user located and assume that a subset of the total ensemble of BSs

cooperates by jointly transmitting a message to this tagged receiver, if we consider a nearest

BS connectivity model, where a mobile tried to connect with its closest BS. This results in a

Voronoi tessellation of the plane corresponding to the BS locations. In this case, the service area

of a BS is the Voronoi cell associated with it (in Figure 2). When femtocells operate in closed

access mode, only registered femtocells user can be allowed to contact to FBSs. On other hand,

in open access mode, both macrocell user and unregistered femtocells user can be allowed to

contact to FBSs, and then, the coverage region of FBS includes femtocells user and macrocell

user connecting to femtocell as shown in Figure 3. We can see that rM and rF are the distances

of MBS and FBS from user. From our proposed scheme, when the FBS is in sleeping mode, the

Figure 2. Poisson distributed BSs and mobiles, with each mobile associated with the nearest BS. The cell boundaries are

shown and form a Voronoi tessellation [12].

Figure 3. The activity level of BSs and location of users.
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user communicates with the active MBS. On the contrary, the user communicates with the

active FBS as shown in Figure 3.

2.1. Signal-to-interference-plus-noise ratio

We denote a BS by its location, while the user is at the origin 0. For downlink transmission of a

MBS to the typical user 0, the SINR experienced by a macrocell user is given by:

SINR ¼
Pihir

−α

∑
i¼1, i ≠j

Pjhjjrij
−α þ σ2

, (1)

where h is channel, the background noise is assumed to be additive white Gaussian with

variance σ2 and α being the path loss exponent.

2.2. Power consumption

Without employing any sleeping mode at each base station in the ith tier, the average power

consumption of the ith tier heterogeneous networks is given by

PHet, i ¼ λiðPio þ ΔiβPiÞ: (2)

In a two-tier cellular network, the total power consumption comes from macrocell tier and

femtocell tier, which are expressed as:

Ptotal ¼ λMðPM0 þ ΔMβPMBSÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

macro�tier

þ πr2MλFðPF0 þ ΔFβPFBSÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

femto�tier

, (3)

where PM0 and PF0 are the static power expenditure of the MBS and FBS, and ΔM, and ΔF are

the slope of the load-dependent power consumption in MBS and FBS, respectively. β is the

power control coefficient of MBS and FBS. PMBS and PFBS are the transmit powers of MBSs and

femto BSs, respectively.

2.3. Network energy efficiency

The throughput outage probability defined as the probability that a user in the macro (femto)

tier is unable to achieve a certain minimum target throughput as follows:

εMðλFÞ ¼ 1−P
�

BMlnð1þ SINRMÞ > TM

�

εFðλFÞ ¼ 1−P
�

BFlnð1þ SINRFÞ > TF

�

:

(4)

Network energy efficiency can be defined as the ratio of the total amount of throughput and

total power consumption in the network. The energy efficiency (EE) function can be written as:
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EE ¼
λMCM þ λFπr

2
M
CF

PM þ πr2
M
PF

¼
λMð1−εMÞlog2ð1þ SINRMÞ þ λFπr

2
M
ð1−εFÞlog2ð1þ SINRFÞ

λMðPM0 þ ΔMPMÞ þ λFπr
2
M
ðPF0 þ ΔFPFÞ

,

(5)

where C is the throughput and ε is coverage probability of macro and femto users, respec-

tively.

3. Coverage probability

In this section, we use stochastic geometry theory to analyze the coverage performance of

MBS and FBS system under different allocation strategies. Under orthogonal deployment,

the spectrum allocation for MBS and FBS is orthogonal, which avoids the cross-tier interfer-

ence [4]. The received SINR of macro-mobile station (MS) located at the cell boundary is

given by:

SINRM ¼
PM, trhMr

−α

M

σ2
: (6)

To guarantee the coverage performance of macrocell, the received SINR of the MS at the

macrocell edge should satisfy the following equation:

P½SINRM≥TM� ¼ P
PM, trhMr−α

M

σ2
≥TM

� �

: (7)

There is no interference coordination in femtocell. So, inter-tier interference will provide

in femtocell. The received SINR of MS at femtocell edge is written as:

SINRF ¼
PF, trhFr

−α

F

IF þ σ2
: (8)

Similar way, the received SINR of the MS at the femtocell edge should satisfy the following

equation:

P½SINRF≥TF� ¼ P
PF, trhFr

−α

F

IF þ σ2
≥TF

� �

¼ P hF≥
TFr

α

F

PF, tr
ðIF þ σ

2Þ

� �

: (9)

Conditioning on the nearest BS being at a distance r from the typical user, the probability of

coverage averaged over the plane is written as:
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pcðT,λ,αÞ ¼ Er½P½SINR > Tjr�� ¼ ∫
r>0

P½SINR > Tjr�f rðrÞdr

¼ ∫
r>0

P
hFr

−α

σ2 þ IF þ IM
> Tjr

� �

e−λπr
2
2πλrdr

¼ ∫
r>0

e−λπr
2

P½hr−α > TFðσ
2 þ IF þ IMÞjr�2πλrdr:

¼ ∫
r>0

e−λπr
2

P½h > Trαðσ2 þ IF þ IMÞjr�2πλrdr

(10)

Using the fact that h≈ exp ðμÞ, the coverage probability can be expressed as:

P½h > Trαðσ2 þ IF þ IMÞjr� ¼ EIψ ½P½h > Trαðσ2 þ IF þ IMÞjr, Ir��

¼ EIr ½ exp
�

−μTrαðσ2 þ IF þ IMÞ
�

jr� ¼ e−μTr
ασ2LIFðμTr

αÞLIMðμTr
αÞ,

(11)

where LIFðsÞ and LIMðsÞ are the Laplace transform of random variable Iϕ evaluated at the

distance to the closest BS from the origin. This gives a coverage expression:

pcðT,λ,αÞ ¼ ∫
r>0

e−λπr
2

e−μTr
ασ2
LIFðμTr

αÞLIMðμTr
αÞ2πλrdr: (12)

The definition of Laplace transform yields [13]

LIrðsÞ ¼ EIϕ ½e
−sIϕ � ¼ EIϕ ½ exp ð−s∑

i
giR

−α
i Þ�

¼ EIϕ ½∏
i
exp ð−sgiR

−α
i Þ� ¼ EIr ½∏

i
Eg½ exp ð−sgiR

−α
i Þ��

¼ exp
�

−2πλ ∫
∞

r

�

1−Eg½ exp ð−sgiR
−α
i Þ�
�

vdv
�

:

(13)

Now, we have

LIϕðsÞ ¼ Eφ,fgig
½∏
i∈φ

Egi
½ exp ð−sgiR

−α
i Þ�� ¼ EΦ ∏

i∈φ

μ

μþ sR−α
i

" #

¼ exp −2πλ ∫
∞

r
1−

μ

μþ sv−α

� �

vdv

� �

:

(14)

Let gi≈ exp ðμÞ and s ¼ μTrα.

LIϕðμTr
αÞ ¼ exp −2πλ ∫

∞

r

T

T þ ðr=vÞα
vdv

� �

, (15)

Again, u ¼ ðv=rT1=αÞ2, then we get

LIϕðμTr
αÞ ¼ exp −2πλT2=α ∫

∞

T−2=α

1

1þ uα=2
du

 !

¼ exp
�

−2πλρðT,αÞ
�

, (16)

where ρðT,αÞ ¼ T2=α ∫
∞

T−2=α

1

1þ uα=2
du.
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Putting (16) into (12) with gives the desired result.

4. Propose base stations sleep mode strategies

We know that the coverage probability is independent of the sleeping mode. However, we

need to maintain the coverage of the cellular networks when we implement sleeping mode in

MBSs through power control small cells as shown in Figures 1b and 3. In Ref. [9], authors

introduced active/sleep (on/off) modes in MBSs and improved the energy efficiency in cellular

networks. In this chapter, we consider the HCNs comprised of macrocell and femtocell tiers.

We propose switching off/on systems for the efficient power consumption at the BSs in the

cellular networks, which introduce active/sleep modes in the MBSs and FBSs. The active/sleep

modes reduce the interference and power consumption as well as improve the energy effi-

10 ciency of the cellular networks. We derive the two-tier HCNs under different sleeping policies

as well as formulate power consumption minimization for the MBSs and FBSs. An optimiza-

12 tion problem is formulated to maximize the energy efficiency subject to throughput outage

13 constraints as well as solved by the KKT conditions in terms of the femto tier BS density. Thus,

14 the total power consumed by each BS in the macro and femto tiers is modeled as follows:

PM ¼

(

PM0 þ ΔMβPMBS, for active mode
0M, for sleeping mode

:

PF ¼

(

PF0 þ ΔFβPFBS, for active mode
0F, for sleeping mode

(17)

15 From Eq. (17), we can see that the MBS and FBS are active modes, and the maximum power is

16 consumed by BSs. Otherwise, power consumption is zero when it is in sleeping mode.

17 4.1. Random sleeping

18 In random sleeping strategy, we take it as a Bernoulli trial, that is, each BS actives with

19 probability q and sleeps with probability 1 − q independently for macro and femto BSs [9, 14].

20 Then, the sleep modes of other BSs are determined according to the distances between a BS

and user. Power consumption of random sleeping problem is formulated as follows:

PRSðMBSÞ ¼ λMqMðPMO þ ΔMβPMBSÞ þ λMð1−qMÞPsleep, (18)

22 and

PRSðFBSÞ ¼ λFqFðPFO þ ΔFβPFBSÞ þ λFð1−qFÞPsleep: (19)

23 The power is consumed in the macro tier and femto tier BS when operating in the active and

24 sleep mode, and then the total average power is given by:
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Ptotal ¼ λMqMðPM0 þ ΔMβPMÞ þ λMð1−qMÞPsleep
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

macro�tier

þ πr2M:

λFðPF0 þ ΔFβPFÞ þ λFð1−qFÞPsleep
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

femto�tier

(20)

Thus, the energy efficiency of the network for random sleeping is given by:

EE ¼
λMð1−εMÞlog2ð1þ SINRMÞ þ πr2MλFð1−εFÞlog2ð1þ SINRFÞ

λMqMðPM0 þ ΔMβPMÞ þ λMð1−qMÞPsleep þ πr2MλFðPF0 þ ΔFβPFÞ þ λFð1−qFÞPsleep
: (21)

The network energy efficiency is expressed in the units of nats/Joule. The numerator in Eq. (21)

is the total average throughput achieved by all the users in the two-tier network, and the

denominator is the total power consumption use of Eqs. (18), (19) and (20).

4.2. Strategic sleeping

The sleep mode strategy can be considered as a load-aware policy and can incorporate traffic

profile in the optimization problem. By applying strategic sleeping, the average power con-

sumption can be expressed as:

PSSðMBSÞ ¼ λM

�

EfsgðPMO þ ΔMβMPMBSÞ þ λMð1−EfsgÞPsleep

�

, (22)

and

PSSðFBSÞ ¼ λF

�

EfsgðPFO þ ΔFPMBSÞ þ λFð1−EfsgÞPsleep

�

: (23)

10 In case of random sleeping mode, a network is developed that is adaptive to the fluctuating

activity levels during the day. The strategic sleeping mode can go one step further. It can model

12 a network that is adaptive to fluctuating activity levels within the location [9]. In addition, the

13 strategic sleeping model can measure the impact of cooperation among MBSs. The energy

14 efficiency of the network for strategic sleeping is given by:

EE ¼
λMð1−εMÞlog2ð1þ SINRMÞ þ λFπr

2
Mð1−εFÞlog2ð1þ SINRFÞ

λM

�

EfsgðPMO þ ΔMβPMBSÞ þ λMð1−EfsgÞPsleep

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

macro�tier

þπr2M

�

λF

�

EfsgðPFO þ ΔFβPMBSÞ þ λFð1−EfsgÞPsleep

��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

femto�tier

:

(24)

15 Similar way, the network energy efficiency is expressed as the numerator in Eq. (24) of the total

16 average throughput achieved by all the users in the two-tier network and the denominator of

17 the total power consumption use of Eqs. (22) and (23).
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4.3. Optimization problem

To solve the following multi-objective optimization problem [14]:

max
λF

EEðλFÞ

s:t: 1−P
�

BMlnð1þ SINRMÞ > TM

�

≤εM,

1−P
�

BFlnð1þ SINRFÞ > TF

�

≤εF

(25)

where εM and εF denote the outage objectives guaranteeing a minimum target throughput for

each user in the macro and femto tier, respectively. The optimal femto tier BS density λ∗

F that

maximizes the energy efficiency of network subject to the downlink outage constraints is given

by λ∗

F

λ∗

F ¼

½λEE,F� for μ∗

M ¼ 0, μ∗

F ¼ 0 ðboth inactiveÞ

λMð1−qÞζ−1 for μ∗

M > 0, μ∗

F ¼ 0 ðmacro active & femto inactiveÞ

λF−λMqζ
−1 for μ∗

M ¼ 0, μ∗

F > 0 ðmacro inactive & femto activeÞ
λFð1−qÞ for μ∗

M > 0, μ∗

F > 0 ðboth activeÞ

,

8

>

>

<

>

>

:

(26)

where μ∗

M and μ∗

F are the Lagrange multipliers and ζ ¼ ðPF=PMÞ2=α is power ratio of BSs.

The optimization problem in Eq. (25) is determined by satisfying the KKT conditions as

10 follows:

LðλEE,μM,μF,λFÞ ¼ EEðλFÞ−μM½1−P
�

BMlnð1þ SINRMÞ > TM

�

−εM�:

−μF½1−P
�

BFlnð1þ SINRFÞ > TF

�

−εF�

(27)

The KKT conditions are then listed as follows:

∂Lðλ∗

FÞ

∂λF
¼ 0,

1−P
�

BMlnð1þ SINRMÞ > TM

�

≤εM

1−P
�

BFlnð1þ SINRFÞ > TF

�

≤εF

(28)

μ∗

M½1−P
�

BMlnð1þ SINRMÞ > TM

�

−εM� ¼ 0:

μ∗

F½1−P
�

BFlnð1þ SINRFÞ > TF

�

−εF� ¼ 0

μ∗

M > 0, μ∗

F > 0

(29)

12 Based on the listed KKT conditions, evaluating each possible scenario for which μ∗

M and μ∗

F are

13 either active or inactive gives the optimal femto tier BS density λ∗

F.
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5. Combined coordinated multi-point (CoMP) transmission and BS

sleeping scheme

In this section, we also evaluate the performance of the combined CoMP and BS sleeping

scheme in a two-tier HCNs. The first tier is deployed as MBSs with a density of λM, and the

second tier is deployed as FBSs with a density of λF.

5.1. BS cooperation

BS sleeping has been proved to be an effective technique for saving energy consumption in

cellular networks. However, BSs in sleeping mode might cause coverage holes, which have a

negative impact on the connectivity of the network. We conduct a stochastic geometry analysis

10 to evaluate the performance of the proposed combined CoMP and BS sleeping scheme in

HCNs for energy efficiency [10]. We apply CoMP to avoid coverage holes when the target

12 SINR cannot be reached. Applying stochastic geometry tools, we formulate and compare the

13 coverage probability and the energy efficiency in HCN scenarios with and without CoMP.

14 The cooperative set is composed of the closest BSs in each network tier to the user. The density

15 of CoMP is the same as the tier contains BSs with the lowest density. The probability of CoMP

16 happens is equal to the probability of awake MBSs q, and its density is qλM. We assume that

17 the awake MBSs can always cooperate with FBSs to transmit, so that n = K = 2. Here, n is the

18 number of cell cooperatives. The following lemma gives the coverage probability of the com-

19 bined CoMP and BSs sleeping control.

20 Theorem [10]: In two-tier HCNs with CoMP and BSs sleeping, the coverage probability of a

randomly located user is given by:

pc_CoMP ¼ 4π2q2λMλF∫ exp
�

−2πqλMs
2=α
1 Fðr1s

−1=α
1 Þ

�

·

exp
�

−2πqλFs
2=α
2 Fðr2s

−1=α
2 Þ

�

· exp
�

−πqðλMr
2
1 þ λFr

2
2Þ
�

r1r2dr1r2,

(30)

22
where si ¼

TPi

P1r
−α
1
þP2r

−α
2
for ri≥0, i ¼ f1, 2g and FðxÞ ¼ ∫

∞

x

r

1þ rα
dr.

23 The energy efficiency of the networks for BS cooperation

EE ¼
λMpc_CoMPlog2ð1þ SINRMÞ þ πr2MλFpc_CoMPlog2ð1þ SINRFÞ

λMqMðPM0 þ ΔMβPMÞ þ λMð1−qMÞPsleep
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

macro �tier

:

þπr2M

�

λFðPF0 þ ΔFβPFÞ þ λFð1−qFÞPsleep

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

femto�tier

(31)

24 From Eq. (31), we can see that the energy efficiency is related to the coverage probability and

25 the power consumption of whole networks.
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5.2. BS non-cooperation

The typical user only connects to the nearest BS, which belongs to first tier in a non-CoMP

scenario [10]. Then, the coverage probability in the case of BS non-cooperation is given by:

pc_Non�CoMP ¼
1

1þ T2=α2FðT−1=αÞ þ T2=α

sincð2=αÞ
qλF

qλM

P
2=α
2

P
2=α
1

: (32)

Thus, the energy efficiency of the networks for BS non-cooperation is given by:

EE ¼
λMpc_Non−CoMPlog2ð1þ SINRMÞ þ πr2MλFpc_Non−CoMPlog2ð1þ SINRFÞ

λMqMðPM0 þ ΔMβPMÞ þ λMð1−qMÞPsleep
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

macro �tier

þ πr2M

�

λFðPF0 þ ΔFβPFÞ þ λFð1−qFÞPsleep

�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

femto�tier

:

(33)

From Eqs. (30) and (32), we can see that the coverage probability depends on both the sleep

strategy and BSs density ratio.

6. Markovian wireless networks

The BS can be in either of the two operational states: ON or OFF. If BS is ON, the energy

increases with the energy harvesting rate and decreases according to the number of users

served by that BS. However, if the BS is OFF, it does not serve any users.

6.1. Uncoordinated

In this class of strategies, the decision to toggle the operational state, that is, turn a BS ON or

OFF, is taken by the BS independently of the operational states of the other BSs.

6.2. Coordinated

In this class of strategies, the decision to toggle the state of a particular BS is dependent upon

the states of the other BSs.

6.3. Energy efficiency of two-cell cellular networks

To investigate the basic energy efficiency performance of two-cell cellular network, in this case,

a user’s channel of two-cell cellular network is modeled into good and bad states due to

channel conditions [15]. Moreover, a transition from one state to the next state only depends

on the current state with the state space f0, 1g, where ‘0’ corresponds to a good state and ‘1’

corresponds to a bad state in Figure 4. Based on properties of Markovian processes, a channel

transition probability matrix is given by:
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qðnÞ ¼

"

q
ðnÞ
00 q

ðnÞ
01

q
ðnÞ
10 q

ðnÞ
11

#

¼

"

q00 q01
q10 q11

#ðnÞ

, (34)

where qi, j, i and j∈f0, 1g, is a one-step transition probability from the state i into the state j, and

q
ðnÞ
i, j , i and j∈f0, 1g, is a probability from the initial state i into the state j after n steps transition.

The energy efficiency for multicell cellular networks is given by:

EEmulticell ¼ ∑
K

i¼1
log2 1þ

Pi‖hi‖
2
F

σ
2
i þ ∑

j¼1, i≠j
Pj‖hi, j‖

2
F

0

B

B

@

1

C

C

A

=∑
K

i¼1
Pi: (35)

The wireless channels of multicell cellular network are assumed as two-state Markovian

wireless channels, due to the memory-less property of two-state Markovian wireless channel

model [15]. Furthermore, after an n steps state transition in two-state Markovian wireless

channels, a model of energy efficiency of multicell cellular network is given by:

EEmulticell ¼

∑
K

i¼1
log2 1þ

Pi‖h
good
i ‖2

F

σ
2
i þ ∑

j¼1, i≠j
Pj‖h

good
i, j ‖

2
F

0

B

B

@

1

C

C

A

q
ðnÞ
00 þ log2 1þ

Pi‖h
bad
i ‖2

F

σ
2
i þ ∑

j¼1, i≠j
Pj‖h

bad
i, j ‖

2
F

0

B

B

@

1

C

C

A

q
ðnÞ
01

8

>

>

<

>

>

:

9

>

>

=

>

>

;

∑
K

i¼1
Pi

:

(36)

To analyse the impact of cell number on the energy efficiency of multicell cellular networks; for

a good state channel, h
good
i ¼ 0:9 and h

good
i, j ¼ 0:1; for a bad state channel, hbadi ¼ 0:6 and

hbadi, j ¼ 0:4; n steps transition probabilities of two-state Markovian channels are fixed as

P
ðnÞ
00 ¼ 0:8 and P

ðnÞ
01 ¼ 0:2; and the noise is σ2i ¼ 0:1. Moreover, an initial state transition proba-

bility matrix of two-state Markovian chain channels is shown as:

Figure 4. State transition diagram of two-state Markovian wireless channel.
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q ¼

�

q00 q01
q10 q11

�

¼

�

0:8 0:2
0:6 0:4

�

¼

�

4=5 1=5
3=5 2=5

�

: (37)

7. Numerical results

In this section, we present numerical evaluations of the integral expressions for the coverage

probability and energy efficiency performance. We focus on the two network tiers consisting of

a macro tier overlaid with a femto tier. The assumed parameter values for two-tier HCNs are

based on the values used in Table 1. We assume that α ¼ 4 and that the first tier has spatial

intensity λ1 ¼ ð5002πÞ−1 and available power P1 ¼ 25, while the second tier has spatial inten-

sity λ2 ¼ 5λ1 and available power P2 ¼ P1=25.

Figure 5 illustrates the effect of the SINR threshold T on the coverage probability. By compar-

ing the performance of the cooperative scheme to the baseline of no cooperation scheme, we

observe that around 0 dB cooperation yields relative gains in coverage probability of up to

about 30% compared to non-cooperative. The coverage probability can be directly related to

the ergodic rate of communication from the cooperating BSs to the typical receiver.

Figure 6 plots the coverage probability versus noise σ
2 for different sleeping strategies. The

sleeping strategy is modeled as 0 and 1, respectively. As shown in Figure 6, in strategic

Symbol Description Value

B Bandwidth 180 kHz

α Path loss exponent 4

TM SINR threshold for macro 8 dB

TF SINR threshold for femto 5 dB

PMBS Macro BS transmit power 20 W

PFBS Femto BS transmit power 2 W

rM Macro range 300 m

rF Femto range 15 m

PMO Static power MBS 130 W

PFO Static power FBS 4.8 W

ΔM Slope of MBS 4.7

ΔF Slope of FBS 8

PM�sleep Sleeping power MBS 75 W

PF�sleep Sleeping power FBS 5 W

λM Density of MBS 1 · 10−4 m−2

λF Density of FBS 1 · 10−2 m−2

Table 1. Network parameter values.
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sleeping mode, the coverage probability is marginally better than no sleeping mode. It can also

be said that strategic sleeping has a bigger margin of improvement over no sleeping when

σ
2
! 0. Finally, it can be seen that strategic sleeping is always better than random sleeping for

the same fraction of sleeping MBSs and FBSs.

Figure 5. Comparison of the coverage probabilities for BS cooperation and no cooperation against the threshold in dB.

Figure 6. Coverage probabilities for different sleeping strategies.
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Figure 7 shows the maximum two-tier achieved energy efficiency versus density. The assumed

parameter values for the two-tier HCNs are based on the values used in Table 1. In general, the

maximum two-tier energy efficiency decreases with increasing density. Note that, we show the

Figure 8. Energy efficiency versus density for the CoMP and non-CoMP.

Figure 7. Two-tier network energy efficiency versus density.
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energy efficiency curves close to the points for PFBS=PMBS ¼ 0:1, 0:2, 0:3 and 0:4. The observa-

tions made from Figure 7 underscore the impact of the femto-to-macro BS power consumption

factor on the ability to maximize the two-tier energy efficiency while satisfying the outage

objectives.

Figure 8 shows the energy efficiency of the CoMP and non-CoMP schemes versus density. It is

observed that the energy efficiency improves according to the density. The proposed scheme of

combined CoMP and BSs sleeping mode is increased by 2% of energy efficiency from non-

CoMP schemes. Numerical results confirm that the combined CoMP and BS sleeping can

improve the energy efficiency as well as increase the coverage probability compared with

implementing BS sleeping only. Moreover, the performance of non-CoMP is almost same as

the macro BS sleeping only [9].

8. Conclusion

In this chapter, we provide energy efficiency of two-tier network through deploying sleeping

strategy in MBSs and FBSs. The MBS and FBS are switching off/on systems, that is, it reduces

power consumption and interference and improves the energy efficiency of HCNs. Power

consumption is formed into optimization problems, which is determined by the optimal

density of femto tier BS. BSs in sleeping mode might cause coverage holes, which have a

negative impact on the connectivity of the network. Thus, we proposed combined CoMP and

BS sleeping scheme in HCNs for energy efficiency to avoid coverage holes. Numerical results

show that the proposed sleeping strategy can effectively increase energy efficiency. We also

analyze the energy efficiency performance of cellular network based on two-state Markovian

wireless channels.
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